首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobalt Complexes with O2 Bridges: The Structure of the Cations μ-Hydroxo-μ-peroxo-bis[bis(ethylenediamine) cobalt (III)]3+and μ-Hydroxo-μ-superoxo-bis [bis (ethylenediamine) cobalt (III)]4+ X-ray structure determinations of one salt of each of the two chemically and structurally closely related dinuclear cobalt cations [(en)2Co · μ(OH, O2) · Co(en)2]3+ 1a and [(en)2Co · μ(OH, O2) · Co(en)2]4+ 1b have been performed. In both cases the cations exist as racemic mixtures of ΔΔ and ΔΔ isomers. The O–O distance in the μ-peroxo cation 1a is 1.465 Å and the Co–O–O–Co torsion angle is 60.7°. The corresponding values for the μ-superoxo cation 1b are 1.339 Å and 22.0°.  相似文献   

2.
On Reactions of oxygenated Cobalt(II) Chelates. VI. Preparation of diastereoisomeric tetrakis(ethylenediamine)-μ-peroxo-μl-hydroxo-dicobalt(III) Perchlorates Oxygenation of Co(en)22+ leads to a mixture of two isomeric forms of [(en)2Co(O2, OH)-Co(en)2] (ClO4)3 · H2O from which the less soluble meso form can be readily crystallized. Further crystallization from the mother liquor yields the racemate ΔΔ/ΔΔ. The pure racemate may be obtained by either of the following methods: (a) By ligand exchange starting from mono bridged [(NH3)5CoO2Co(NH3)5] (NO3)4 or from doubly bridged [(SCN) (NH3)3Co(O2, OH)Co(NH3)3(SCN)] SCN · 2H2O. (b) By reaction of cis-[Co(en)2(OH2)2]3+ with H2O2. Reaction (b) proceeds via an intermediate cis-[Co(en)2(OOH) (OH2)] (ClO4)2 · H2O which at higher pH reacts with [Co(en)2(OH) (OH2)]2+ to yield the desired doubly bridged ΔΔ/ΔΔ tetrakis(ethylenediamine)-μ-peroxo-μ-hydroxodikobalt(III)-perchlorate.  相似文献   

3.
Polynuclear Cobalt Complexes: The Structure of Bis(tri-μ-hydroxo-bis{triammine-cobalt(III)})trisdithionate The binuclear complex [(NH3)3Co · μ(OH, OH, OH) · Co(NH3)3]2(S2O6)3 crystallizes in the monoclinic space group P21/c with lattice constants a = 10.970, b = 9.412, c = 16.069 Å and β = 117.10°. The unit cell contains four cations and six anions. The structure has been determined by an X-ray crystallographic analysis and was refined to R = 0.052.  相似文献   

4.
The preparation and the properties of 7 salts containing the complex cation [Co2{NO2, OH}(NH3)8]4+ are described. Furthermore, a di-μ-hydroxo complex of the composition [Co2{OH}2NO2(NH3)7](ClO4)3 · H2O has been prepared.  相似文献   

5.
Reactions of oxygenated cobalt(II) complexes. XII. A binuclear μ-peroxodicobalt(III) complex with a macrocyclic bridging ring
  • 1 XI: siehe [1].
  • Singly bridged [(tren) (NH3) CoO2(NH3) (tren)]4+ reacts with excess tren by replacement of NH3 in cis-position to the peroxo group and formation of a new type of doubly bridged μ-peroxo complex. An X-ray structure determination of [(tren)-Co(O2, tren)Co(tren)] (ClO4)4 · 2 H2O showed that the additional tren forms a macrocyclic bridging ring. The conformation of the CoOOCo group is transoid with a dihedral angle of 20°. The crystals are monoclinic with space group P21/c. The lattice constants are a = 9,798, b = 26,385, c = 16,385 Å, β = 110,2° with four formula units in the cell. The final R value is 0,124. ClO anions are disordered. The reactions of [(tren)Co(O2, tren)Co(tren)]4+ in aqueous solution are compared with those of [(tren) (NH3) CoO2Co (NH3tren)]4+. In acidic solution the new complex mainly decomposes to CoII and O2. In alcaline medium the bridging tren is replaced by an OH bridge, forming the well characterized doubly bridged [(tren)-Co(O2, OH)Co(tren)]3+. Differing from the singly bridged bis (ammino) complex, the reactions of which show no pH dependency at all, the decomposition of the tren bridged complex is H+-catalyzed. The kinetic data have been interpreted as (i) preceding fast protonation step which is followed by a conformational change of the bridging ring, (ii) acid hydrolysis of a Co-μ-tren bond and (iii) fast cleavage of the Co-OO bond which is labilized by coordinated H2O.  相似文献   

    6.
    Cobalt Complexes with 02 Bridges: Structure of μ-Peroxo-bis[pentaamminecobalt(III)] Tetranitrate Dihydrate An X-ray structure determination of the binuclear complex [(NH3)5CoO2Co(NH3)5] (NO3)4 · 2 H2O A has been performed; R = 0.051. A crystallizes in the space group P21/n with Z = 2 and with lattice constants a = 11.657(5), b = 11.977(6), c = 8.082(4) Å, and β = 91.58(4)°. The complex cation has crystallographic 1 -symmetry. The Co? O? O? Co unit is planar with an O? O distance of 1.472(6) Å. Two of the three crystallographically independent NO3 groups show disorder.  相似文献   

    7.
    Polynuclear Cobalt Complexes. V. Preparation of tetrakis (ethylenediamine)-μ-peroxo-μ-amido and μ-peroxo-μ-thiocyanato-dicobalt (III) complexes starting from tetrakis (ethylenediamine)bis-(ammine)-μ-peroxo-dicobalt (III)-tetraperchlorate Racemic tetrakis (ethylenediamine)-μ-peroxo-μ-amido-dicobalt (III) thiocyanate and its corresponding hydroperoxo- and superoxo-complexes have been isolated from [(en)2(NH3)Co(O2)(NH3)(en)2](ClO4)4. A new binuclear peroxo complex containing thiocyanate as bridging ligand was prepared by the same method. The stretching frequencies of the CN- and CS-group as well as the NCS-bending frequence in the IR. spectrum of [(en)2Co(O2, SCN)Co(en)2](NO3)3 suggest that the μ-thiocyanato group is N-bonded (2050, 750, 475 cm?1). A comparison of IR. spectra of known singly and doubly bridged μ-peroxo complexes is made. Characteristic absorption bands, assignable to ν(O? O) and ν(Co? O) are given.  相似文献   

    8.
    The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

    9.
    The crystal structure of Di-μ-sulfato-μ-hydroxo-bis[triamminecobalt(III)] sulfate 8-hydrate has been determined from three-dimensional x-ray data collected by counter techniques. The structure was refined using 2515 independent reflections and the refinement converged to a conventional R factor (on F) of 3.8%. The compound crystallizes in the monoclinic space group C—P2/a, a = 14.122(9), b = 9.858(2), c = 18.81(2) Å, β = 139.3(4), Z = 2, dobsd = 2.086 g/cm3 and dcalc = 2.14 g/cm3. Within the cation two bidentate SO4-ligands form bridges between two cobalt atoms. There are two types of S? O bonds (1.50 Å endocyclic, 1.45 Å exocyclic).  相似文献   

    10.
    The title compound, [Co(C5H9N)4(H2O)2](ClO4)2, crystallizes in the monoclinic space group C2/m. The cation has space‐group‐imposed 2/m symmetry, while the perchlorate ion is disordered about a mirror plane. The two slightly non‐equivalent Co—C bonds [1.900 (3) and 1.911 (3) Å] form a rectangular plane, with a C—Co—C bond angle of 86.83 (11)°, and the linear O—Co—O C2 axis is perpendicular to this plane. The C[triple‐bond]N bond lengths are 1.141 (4) Å and the Co—C[triple‐bond]N and C[triple‐bond]N—C angles average 175.5 (4)°. The perchlorate counter‐ions are hydrogen bonded to the water molecules. The title compound is the first example of four alkyl isocyanide ligands coordinating CoII upon initial reaction of Co(ClO4)2·6H2O/EtOH with alkyl isocyanide. In all other known examples, five alkyl isocyanide molecules are coordinated, as in [(RNC)5Co—Co(CNR)5](ClO4)4 (R = Me, Et, CHMe2, CH2Ph, C4H9n or C6H11) or [Co(CNC8H17t)5](ClO4)2. This complex, therefore, is unique and somewhat unexpected.  相似文献   

    11.
    Coordination Chemistry of Gallium(III) with Macrocyclic Ligands. Synthesis and Crystal Structure of Di-μ-hydroxo-μ-acetato-bis[(1,4,7-triazacyclononane)gallium(III)] Triiodide · Monohydrate The coordination chemistry of 1,4,7-triazacyclononane (L) and N,N′,N″-trimethyl-1,4,7-triazacyclononane (L′) with gallium(III) has been investigated. Monomeric species LGaCl3 and L′GaCl3 have been isolated from nonaqueous solutions of GaCl3 and the respective amine. From alkaline, aqueous solutions of Ga(NO3)3, and the respective amine binuclear complexes have been isolated; [L2Ga2(OH)2(μ-OH)2](ClO4)2 · 5 H2O, [L2Ga2(μ-CH3CO2)(μ-OH)2]I3 · H2O. [L′2Ga2(μ-OH2CH3CO2)2](ClO4)4 · H2O was obtained from a methanolic solution of Ga(NO3)3 and NaCH3CO2. [L2Ga2(μ-OH)2(μ-CH3CO2)]I3 · H2O crystallizes in the monoclinic space group P21/a (Z = 4); two GaIII-centers are connected via two OH- and one acetato-bridge.  相似文献   

    12.
    The crystal structures of a pair of closely related macrocyclic cyano‐ and hydroxopenta­amine­cobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C11H27N5)](ClO4)2·H2O and [Co(OH)(C11H27N5)](ClO4)2, exhibit similar conformations, significant differences in the Co—N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogen‐bonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen‐bonding motifs involving the anion O atoms and the N—H and O—H donors.  相似文献   

    13.
    The novel μ‐oxo‐diiron complex [Fe2O(BPHPA)2](ClO4)4 [BPHPA is (6‐hydroxy­methyl‐2‐pyridyl­methyl)­bis(2‐pyridyl­methyl)­amine, C19H20N4O], contains a binuclear centrosymmetric [Fe2O(BPHPA)2]4+ cation (the bridging O atom lies on an inversion centre) and four perchlorate anions. Each iron ion is coordinated by four N atoms [Fe—N = 2.117 (5)–2.196 (5) Å] and one O atom [Fe—O = 2.052 (5) Å] from a BPHPA ligand, and by one bridging oxo atom [Fe—O = 1.7896 (9) Å], forming a distorted octahedron. There are hydrogen bonds between the hydroxy group and perchlorate O atoms [O—H·O = 2.654 (7) Å].  相似文献   

    14.
    Polynuclear Cobalt Complexes. II. Preparation and Structure of [(tren) (NH3)Co(O2)Co(NH3) (tren)](SCN)4 · 2H2O The title compound is obtained on oxygenation of [Co(tren)(H2O)2]2+ in 6M aqueous ammonia or by ligand exchange starting from [(NH3)5Co(O2)Co(NH3)5]-(NO3)4. An X-ray structure determination was made. The substance forms monoclinic crystals, space group P21/c, lattice constants a=10,135, b=8,473, c=19,484 Å, β=108,58°, with two formula units in the cell. The final R is 0,066. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar; the Co? O? O angle is 111,5°. The tertiary nitrogen atoms of both chelate groups are cis to the O2 bridge, as found in doubly bridged [(tren)Co(O2,OH)Co(tren)](ClO4)3 · 3H2O. On acidification in solution, the singly bridged cation [(tren) (NH3)CoO2Co(NH3)(tren)]4+ (a) loses the bound O2 completely. But unlike the doubly bridged cation b , the rate of dissociation of a is independent of pH (Fig. 5). At higher pH (8–10) bridging a→b (Fig. 2) occurs. Both reactions must have the same rate determining step, the first order rate constants being of the order of 2 · 10?3 s?1 (25°, 0,35M KCl).  相似文献   

    15.
    A new perchlorate salt of melem (2,6,10‐triamino‐s‐heptazine, C6N7(NH2)3) was obtained from an aqueous solution of HClO4 at lower concentration than the ones reported for the synthesis of melemium perchlorate monohydrate (HC6N7(NH2)3)ClO4·H2O. The new salt was identified as melemium melem perchlorate (HC6N7(NH2)3)ClO4·C6N7(NH2)3 representing a melem adduct of water free melemium perchlorate. The crystal structure was solved by single‐crystal X‐ray methods ( , no. 2, Z = 2, a = 892.1(2), b = 992.7(2), c = 1201.5(2) pm, α = 112.30(3), β = 96.96(3), γ = 95.38(3)°, V = 965.8(4)·106 pm3, 4340 data, 387 parameters, R1 = 0.039). Melemium melem perchlorate crystallizes in a layer‐like structure containing both protonated HC6N7(NH2)3 and non protonated C6N7(NH2)3 moieties in the coplanar layers as well as perchlorate ions between them, all of which being interconnected by hydrogen bonds. Vibrational spectroscopic investigations (FTIR and Raman) of the salt were conducted.  相似文献   

    16.
    The reaction of the meso-diol, Δ,Λ-[(en)2Rh(OH)2Rh(en)2]4+, with aqueous H2O2 and 1 equiv. of NaOH at 90° forms the μ-peroxo-μ-hydroxo-bridged species Δ,Λ-[(en)2Rh(O2,OH)Rh(en)2]3+ in a yield of ca. 50%. The compound was crystallized as perchlorate and trifluoromethanesulfonate salts. The structure of the latter salt was determined by single-crystal X-ray diffraction. The crystals are triclinic with space group P1 and lattice constants a = 11.895(5), b = 12.491(4), c = 13.053(5) Å, α = 103.98(3), β = 92.59(3), γ = 119.52(6)°. The distances of the metal centres to the bridging peroxo ligand are 1.999(8) and 1.983(6) Å. The O? O distance in the peroxo group is 1.521(14) Å, and the dihedral angle of the Rh? O? O? Rh unit deviates 65° from planarity. The peroxo complex reacts reversibly with acid, and spectrophotometric studies suggest that the reaction involves protonation of the peroxo bridge, with pKa = 2.70(2) at 25° in 1M NaClO4.  相似文献   

    17.
    Report of the preparation, chemical properties, and the infrared-to-ultra-violet spectra of the perchlorates and bromides of the two complex cations [Co2{ac(OH)2}(NH3)6]3+ (where ac = HCO2, CH3CO2; CH2ClCO2, CHCl2CO2, CCl3CO2, CHFCO2, CHF2CO2 und CF3CO2) and [Co2{ac2(OH)}(NH3)6]3+ (where ac = CH2ClCO2, CHClCO2 und CCl3CO2). The perchlorate, nitrate, bromide and dithionate salts of the tetranuclear complex [Co4{C2O4(OH)4}(NH3)12]6+ are described. The complex reported by WERNER as [Co2{OH}2(CH3CO2)H2O(NH3)6]Br3 actually has the formula [Co2{CH3CO2(OH)2}(NH3)6]Br3 · CH3COOH.  相似文献   

    18.
    The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

    19.
    The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

    20.
    The averages (average deviations from the mean are given in square brackets) of uncorrected Cl—O bond distances in a perchlorate anion from an X‐ray diffraction analysis of (N‐{2‐[bis(pyridin‐2‐ylmethyl)amino]ethyl}pyridine‐2‐carboxamidato)(nitric oxide)manganese perchlorate acetonitrile disolvate, [Mn(C20H20N5O)(NO)]ClO4·2CH3CN or [Mn(PaPy3)(NO)]ClO4·2CH3CN, decrease from 1.447 [4] Å at 10 K to 1.428 [4] Å at 170 K. The 10 K value is close to the neutron value (1.441 [1] Å) at 18 K. Comparisons are made with a second X‐ray study at 30 K [1.444 (8) Å] and to libration‐corrected, density functional theory (DFT), and Cambridge Structural Database (CSD) values.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号