首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用滴涂法制备了单壁碳纳米管修饰的纳米碳纤维电极,研究了多巴胺(DA)、抗坏血酸(AA)及其混合溶液在修饰前后电极上的电化学行为。在20 mmol/L Tris-HCl(pH 7.4)缓冲溶液中,修饰电极对DA和AA具有很好的电催化作用。采用差示脉冲伏安法对DA与AA混合溶液氧化峰电流与浓度的关系进行定量分析,DA和AA的氧化峰电流在1.0×10-7~5.0×10-5mol/L和1.0×10-5~1.0×10-3mol/L范围内与浓度呈线性关系,其线性回归方程及相关系数分别为Ip=0.0012c+4×10-9,r=0.9907;Ip=10-5c+7×10-10,r=0.9974,两种物质的检测限分别达到8.0×10-9mol/L和2×10-6mol/L。  相似文献   

2.
利用电化学还原方法制备纳米金/石墨烯修饰玻碳电极,研究了多巴胺(DA)在该修饰电极上的电化学行为,建立了电化学测定多巴胺的新方法。结果表明,在磷酸盐缓冲溶液中,此修饰电极对多巴胺的电化学响应具有很好的催化作用。利用差示脉冲伏安技术对多巴胺的电化学氧化进行定量分析,多巴胺的氧化峰电流与其浓度在1.0×10-7~1.0×10-5mol/L范围内呈良好的线性关系,检测限低至4.0×10-8mol/L。该修饰电极适于多巴胺的分析检测。  相似文献   

3.
采用循环伏安法制备了聚三聚氰胺-石墨烯复合膜修饰电极(poly-(MA)-ERGO/GCE)。研究了抗坏血酸(AA)、尿酸(UA)和多巴胺(DA)在该修饰电极上的电化学行为。结果表明,该修饰电极对AA、UA和DA均有良好的电化学响应,且三者的氧化峰在该修饰电极上可完全分离。据此建立了在大量AA存在下同时测定UA和DA的新方法。在优化条件下,微分脉冲伏安法(DPV)测定UA和DA的线性范围均为1.0×10~(-8)~5.0×10-6mol·L~(-1),检出限(3sb)均为5.0×10~(-9)mol·L~(-1)。  相似文献   

4.
在石墨烯纳米片修饰电极(GN/GCE)上,通过电聚合的方法制备了新颖的桑色素/石墨烯复合修饰电极(M/GN/GCE).以多巴胺(DA)和抗坏血酸(AA)为模型化合物,运用循环伏安法(CV)和差示脉冲伏安法(DPV)考察了该复合修饰电极的电催化行为.在pH 7.0的PBS中,DA和AA分别在0.172 V和-0.183 V产生氧化峰,峰位差达355 mV.与单一修饰电极(桑色素修饰电极(M/GCE)、石墨烯修饰电极(GN/GCE)及裸玻碳电极(GCE))相比,DA在M/GN/GCE上的峰电流显著增大.在优化的实验条件下,DA在2.0×l0-8~5.5×10-4 mol/L浓度范围内与其峰电流具有良好的线性关系,检出限达9.0×10-9 mol/L.  相似文献   

5.
用电沉积方法制备了纳米铜修饰电极并将其用于混合溶液中多巴胺(DA)和抗坏血酸的同时测定。在优化的实验条件下,修饰电极对多巴胺和抗坏血酸具有良好的电催化响应,多巴胺的峰电流与浓度在8.0×10-7mol/L~1.0×10-4mol/L范围内成很好的线性关系,抗坏血酸的氧化峰电流与其浓度在8.0×10-6mol/L~1.0×10-3mol/L的范围成良好的线性关系。该修饰电极制备简单、稳定性好,用于样品检测,效果良好。  相似文献   

6.
应用电聚合的方法以4-氨基丁酸(4-ABA)为修饰剂,将4-ABA聚合在玻碳电极(GCE)表面,制得聚4-氨基丁酸修饰电极(P-4-ABA/GCE),并用于多巴胺(DA)的检测。在pH 5.0的磷酸盐缓冲液(PP)中,DA在0.488V处出现一灵敏的氧化峰,氧化峰电流与DA浓度在9.1×10-8~6.7×10-5mol/L范围内呈现线性关系。检出限为3.0×10-8mol/L。制备的修饰电极,可应用于针剂中多巴胺含量的测定。  相似文献   

7.
制备了镍纳米粒子-离子液体修饰电极,在0.1 mol/L磷酸缓冲溶液(pH 6.0)中研究了多巴胺(DA)在修饰电极上的电化学行为.与裸电极相比,DA在该修饰电极上的氧化还原电位明显降低,氧化还原反应的峰电流明显增大,DA的峰电流与其浓度在2.0×10~(-8) ~1.0×10~(-4) mol/L范围内呈良好的线性关系,检出限为6.5×10~(-9) mol/L.该修饰电极对抗坏血酸具有明显的抗干扰能力.  相似文献   

8.
通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及RGO或MnO_2-RGO修饰电极上的循环伏安响应。MnO_2-RGO/GCE复合修饰电极实现AA、DA和UA氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为268和128 m V。检测DA的线性范围为0.06~1.0μmol/L和1.0~80μmol/L,检出限为1.0 nmol/L(S/N=3)。制备的MnO_2-RGO/GCE成功用于人血清样品的多巴胺含量分析。  相似文献   

9.
利用电化学还原法制备了还原氧化石墨烯修饰电极(rGO/GCE)。采用循环伏安法研究了丹皮酚在rGO/GCE上的电化学行为。结果表明,rGO/GCE对丹皮酚有较好的电催化活性。考察了缓冲溶液pH值、扫描圈数、富集时间、扫速等对丹皮酚电化学响应的影响,建立了检测丹皮酚的标准曲线。丹皮酚峰电流与丹皮酚浓度在4.0×10~(-6)~8.0×10~(-5) mol·L~(-1)范围内有良好线性关系:I_(pa)=0.49 c(μmol·L~(-1))+8.46(R~(2 )=0.9786),检出限为1.0×10~(-6) mol·L~(-1)。将此方法应用于丹皮酚软膏样品中丹皮酚含量的测定,回收率为90.0%~108.6%。  相似文献   

10.
通过循环伏安法(CV)制备了芦丁修饰电极,研究多巴胺(DA)在修饰电极上的电化学行为.结果表明,芦丁修饰膜对DA的氧化有明显的催化作用,并且可以消除抗坏血酸(AA)对DA测定的干扰.DA的浓度在1.0×10-7~9.5×10-6 mol/L范围内与其氧化峰电流呈线性关系,相关系数为0.9996,检出限为1.0×10-8 mol/L.将该修饰电极用于注射液样品中DA的测定,结果表明该修饰电极可用于实际样品分析.  相似文献   

11.
壳聚糖-碳纳米管修饰电极的电催化作用研究   总被引:4,自引:0,他引:4  
报道了一种新型的壳聚糖-碳纳米管修饰电极(MC/GCE)的电化学特性.此修饰电极对神经递质去甲肾上腺素(NE)表现出很强的电催化效应,在pH 5.5的磷酸盐缓冲溶液中,NE的峰电流与浓度在5.0×10-6~1.0×10-4 mol/L范围内呈线性关系.此外,其它生物分子如多巴胺(DA)、尿酸(UA)在MC/GCE上也有很好的电化学响应.修饰电极表现出很好的稳定性和选择性.  相似文献   

12.
聚吡咯/多壁碳纳米管修饰电极对多巴胺的测定   总被引:5,自引:3,他引:5  
制备了聚吡咯/多壁碳纳米管(PPy/MWNT)复合膜修饰电极。研究了神经递质多巴胺(DA)在该修饰电极上的电化学行为。实验表明,PPy/MWNT复合膜修饰电极对DA的电催化作用优于PPy修饰电极。在pH=4.10的0.2mol/L醋酸-醋酸钠缓冲溶液中,DA在该修饰电极上的CV曲线于0.31V和0.28V处出现一对灵敏的氧化还原峰,峰电位差△Ep比裸玻碳电极降低58mV,比PPy修饰电极降低28mV,峰电流显著增加。氧化峰电流ipa与DA浓度在1.0×10-4~7.8×10-8mol/L范围内呈良好的线性关系,线性回归方程为ip(μA)=0.2512 1.2300C(×10-5mol/L),相关系数r=0.9992,检出限为3.9×10-8mol/L。常见物质对DA的检测无干扰,DA注射液样品检测回收率为94%~104%。  相似文献   

13.
张英  任旺  李敏娇 《电化学》2012,(1):79-83
研究柠檬酸(CA)修饰玻碳电极(CA/GC)在抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)混合体系中的循环伏安(CV)行为.结果表明,AA、DA和UA在CA/GC电极上氧化峰电流增大,且三者氧化峰电位明显分离(ΔEp(DA,AA)=170 mV,ΔEp(DA,UA)=130 mV,ΔEp(AA,UA)=300 mV).据此,可同时检测AA、DA和UA.在优化的实验条件下,AA、DA和UA的氧化峰电流与其浓度分别在2.0×10-6~1.5×10-3mol.L-1,6.0×10-7~1.0×10-3mol.L-1和6.0×10-7~1.0×10-3mol.L-1范围内呈线性关系.该电极重现性好,可用于盐酸多巴胺针剂DA、VC片剂AA及人体尿液UA的测定.  相似文献   

14.
兰德香  张雷 《分析测试学报》2015,34(12):1339-1347
采用电化学法将6-硫鸟嘌呤(6-TG)和邻氨基苯磺酸(ABSA)共聚在玻碳电极(GCE)表面,制备了6-TG和ABSA的共聚物(P6-TG-ABSA)修饰的GCE(P6-TG-ABSA/GCE),并采用扫描电镜(SEM)及电化学方法对修饰电极的形貌和电化学特性进行表征。SEM图片显示6-TG和ABSA的共聚物呈规则、均匀的颗粒状结构,这有利于其对分析物的电催化作用;循环伏安和差分脉冲伏安分析结果表明,该修饰电极在0.1 mol·L~(-1)的磷酸盐缓冲溶液(PBS,pH 5.0)中,对抗坏血酸(AA)和多巴胺(DA)具有良好的电催化响应,与其在聚6-硫鸟嘌呤和聚邻氨基苯磺酸单聚物修饰电极上的电化学行为相比,二者的氧化峰电流明显增加,峰电位差(ΔEpa)为0.20 V,可对二者进行同时测定。在优化实验条件下,AA和DA的线性范围分别为2~5 000μmol·L~(-1)和2~180μmol·L~(-1),相关系数分别为0.999 8和0.999 7,检出限(S/N=3)分别为0.06,0.05μmol·L~(-1)。AA和DA在不同扫速下的电化学行为表明,AA在P6-TG-ABSA/GCE上的电极过程受扩散过程控制,而DA的电极过程受吸附过程控制。将该修饰电极应用于尿样中AA和DA的同时测定,结果满意。  相似文献   

15.
本研究目的是制备二氧化锰/氧化锌纳米材料半导体电极,并将该电极用于槲皮素的检测中。通过氧化锌和六亚甲基四胺在水热条件下混合,在氧化铟锡玻璃上合成了直径在27~70 nm之间的柱状纳米氧化锌;通过柠檬酸钠和氯金酸制备金纳米颗粒,将金纳米颗粒和二氧化锰颗粒复合到氧化锌/ITO电极表面,制备了ITO/ZnO/Au NPs/MnO_2电极。通过扫描电子显微镜(SEM)和X射线衍射仪(XRD)对纳米材料表面特征和外观形貌进行了表征。借助电化学分析仪,研究了槲皮素在ITO/ZnO/Au NPs/MnO_2电极上的响应效果,考察了氧化还原峰电流与扫描速率、pH值、槲皮素浓度之间的关系,并对电极的稳定性和重现性进行了评价。实验结果表明:在浓度1.0×10~(-6) mol·L~(-1)~4.0×10~(-4 )mol·L~(-1)范围内线性关系良好,线性回归方程为i(μA)=-0.0039c+64.84(c:10~(-5)),线性相关系数为0.9812,检出限为1.0×10~(-7) mol·L~(-1)。通过两三种纳米材料修饰工作电极能提高纳米材料电子传递能力,对槲皮素的氧化具有一定的催化效果,实验方法为黄酮类物质在电化学方面检测提供一种新思路。  相似文献   

16.
利用多电位脉冲沉积法制备纳米金修饰电极(AuNPs/GCE),再将L-精氨酸电聚合在AuNPs/GCE表面,制备出一种新型的聚L-精氨酸/AuNPs/GCE。采用原子力显微镜对上述电极进行了表征,并研究了多巴胺在其上的电化学行为。结果表明:在pH 5.7的磷酸盐缓冲溶液中,聚L-精氨酸/AuNPs/GCE对多巴胺的氧化有良好的电催化作用,多巴胺的氧化还原反应是受吸附控制的准可逆过程。多巴胺的浓度在8.0×10-7~1.0×10-4 mol·L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)为1.0×10-7 mol·L-1。加标回收率在96.5%~104%之间。对3.0×10-5 mol·L-1多巴胺溶液连续测定7次,峰电流的相对标准偏差为2.6%。  相似文献   

17.
采用一锅法制备聚多巴胺-纳米金修饰玻碳电极(PDA-AuNPs/GCE),用扫描电子显微镜(SEM)对修饰电极进行表面形貌分析,并研究芦丁在该修饰电极上的电化学行为。实验表明,PDA-AuNPs/GCE对芦丁有较好的电催化氧化性能,芦丁的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol·L-1范围内成线性关系,检测下限为2.3×10-7mol·L-1(S/N=3)。该修饰电极可用于复方芦丁片中芦丁含量的检测,效果良好。  相似文献   

18.
制备了纳米NiO-还原石墨烯复合修饰电极(NiO-rGO/GCE),并用于多巴胺(DA)的检测。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了DA在该修饰电极上的电化学行为。结果表明,在pH=7.0的磷酸盐缓冲溶液(PBS)中,该修饰电极对DA有良好的催化作用。DA浓度在5.0×10-7~3.2×10-5 mol/L范围内与氧化峰电流呈良好的线性关系,检出限为3.8×10-8 mol/L。用该修饰电极直接测定了血清中DA含量,回收率在97.8%~101.1%之间。  相似文献   

19.
制备了水杨醛谷氨酸合镍修饰碳黑微电极,在JP-303极谱分析仪上研究了多巴胺(DA)在该修饰电极上的电化学行为,试验结果表明,在pH 7.0的磷酸盐缓冲介质中,多巴胺在该修饰电极上其峰电流增强达3倍之多.产生一灵敏的氧化峰,在0.14 V处峰电流与DA浓度在2.0×10-7~1.0×10-3mol L-1范围内呈线性关系,检出限(3σ)为1.0×10-7mol·.L-1,应用于盐酸多巴胺注射剂中多巴胺的测定,测定结果的RSD(n=7)值小于3.5%,回收率为96%~103%.  相似文献   

20.
以分子线二苯乙炔为修饰剂和粘合剂制备了一种新型的碳糊电极-碳分子线电极(CMWE),并以其为基底电极采用电化学还原法将石墨烯(GR)沉积到CMWE表面得到电沉积石墨烯修饰碳分子线电极(GR/CMWE)。考察了多巴胺(DA)在该修饰电极上的电化学行为。实验结果显示DA在GR/CMWE上出现了1对峰形良好的氧化还原峰,与裸电极相比,该氧化还原峰的电流增大,峰电位差减小,表明修饰电极对DA的电化学反应有催化作用。在最佳实验条件下峰电流与DA浓度在8.0×10-7~2.0×10-3mol/L范围内呈良好的线性关系,检出限(3σ)为2.55×10-7mol/L。将该电极用于多巴胺注射液样品的检测,结果满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号