首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
常见的氢气储存方法有液态储氢、高压气态储氢、有机化合物储氢、金属氢化物储氢、吸附储氢及液相化学储氢材料储氢等,其中液相化学储氢材料由于具有含氢量高、且可按时即需释放氢气的优点,引起了研究人员的广泛关注;选择合适的催化剂催化液相储氢材料制氢已成为一个研究热点。含有Co或Ni的双金属或三金属纳米颗粒是一种极具应用前景的催化剂,具有价格低廉、储量丰富和催化性能优异等众多优点。本文综述了含Co或Ni的双金属或三金属纳米颗粒的制备方法及其催化制氢性能,并提出了其目前研究中存在的问题和未来潜在的发展方向。  相似文献   

2.
以ISOBAM-104为保护剂,采用共还原法制备了一系列不同组成的Rh/Co双金属纳米颗粒(BNPs)。采用紫外-可见吸收光谱、透射电镜及高分辨透射电镜对纳米颗粒的结构及组成进行了表征。结果表明,所制备的Rh/Co BNPs的粒径小于6.0nm,具有合金结构。催化制氢实验结果表明,Rh_(20)Co_(80)BNPs具有最高的催化制氢活性,其TOF值可高达12880mol-H_2·h~(-1)·mol-Rh~(-1),远高于Rh和Co单金属纳米颗粒的催化活性。  相似文献   

3.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

4.
采用化学共还原方法制备了石墨烯负载Pt/Co双金属纳米颗粒(GBNPS)催化剂,并将其用于催化硼氢化钾(KBH4)水解制氢.采用透射电子显微镜(TEM)、X射线衍射(XRD)仪和X射线光电子能谱(XPS)表征了该催化剂,并研究了双金属纳米颗粒的化学组成对其催化KBH4水解制氢性能的影响.结果表明,制备的石墨烯负载Pt/Co双金属纳米颗粒平均粒径为3.2~3.9 nm,其中石墨烯负载Pt20Co80双金属纳米颗粒的催化活性最高,35℃时制氢活性可达35973 molH2·h-1·mol-1Pt,且具有良好的耐久性,催化KBH4水解反应的表观活化能为36 kJ/mol.  相似文献   

5.
曾渊  邓高  张海军  梁峰  李发亮 《化学研究》2019,30(4):342-346
采用化学共还原方法,以ISOBAM-104作为保护剂制备了Mo/Ni双金属纳米颗粒,并研究了ISOBAM-104用量、还原过程中KBH_4用量、金属离子浓度等对其催化KBH_4制氢性能的影响.结果表明:R_(ISO)=40 (R_(ISO)为ISOBAM-104与金属盐的物质的量的比),R_(KBH_4)=5 (R_(KBH_4)为KBH_4与金属盐离子的物质的量的比),金属离子的浓度为2 mmol·L~(-1)时,Mo_(10)Ni_(90)的催化制氢效果最好.在303 K的条件下,Mo_(10)Ni_(90)的催化活性达1 134 mol-H_2·mol-cat~(-1)·h~(-1),其催化KBH_4水解反应的活化能为39.84 kJ/mol.同时Mo/Ni双金属催化剂具有良好的耐久性,在九次重复试验后,其催化性能无明显降低.  相似文献   

6.
采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Pt/Ni双金属纳米溶胶.采用紫外-可见光谱(UV-Vis)、透射电子显微镜(TEM)对所合成的Pt/Ni双金属纳米溶胶进行了表征, 并系统研究了PVP用量、还原剂用量和浓度、双金属比例对该双金属纳米溶胶催化剂催化性能的影响.结果表明, 所制备的双金属纳米溶胶的平均粒径在2.0 nm左右, Pt/Ni双金属纳米溶胶的催化活性比Pt及Ni单金属纳米溶胶的高, 当Pt/Ni摩尔比为1:4时, 纳米溶胶的催化活性最高, 其活性值为16640 molH2·molPt-1·h-1.所制备的Pt/Ni双金属纳米溶胶催化剂具有很好的耐久性, 5次催化实验后该催化剂仍保持较高的催化活性.该双金属纳米溶胶催化NaBH4水解反应的活化能为48 kJ/mol.  相似文献   

7.
采用化学共还原方法制备了聚乙烯吡咯烷酮(PVP)保护的Pt/Ni/Fe三金属纳米颗粒,对所合成的纳米颗粒进行了表征,研究了三金属纳米颗粒的化学组成对其催化NaBH4制氢的影响.研究结果表明,Pt/Ni/Fe三金属纳米颗粒的平均粒径在2 nm左右,Pt/Ni/Fe三金属纳米颗粒催化活性高于Pt,Ni或Fe单金属纳米颗粒和Pt/Ni,Pt/Fe或Ni/Fe双金属纳米颗粒的催化活性,其中Pt10Ni78.75Fe11.25三金属纳米颗粒的催化活性最高,30℃时,其催化活性可达63.920×103molH2/(molPt·h).Pt/Ni/Fe三金属纳米溶胶催化剂具有很好的催化稳定性,10次重复催化实验后,该催化剂依然可以保持较高的催化活性.该三金属纳米溶胶催化NaBH4水解反应的活化能为52 kJ/mol.  相似文献   

8.
采用化学共还原法合成了聚乙烯吡咯烷酮保护的Pt/Cu双金属纳米颗粒(BNPs),并采用紫外可见吸收光谱、透射电子显微镜、高分辨透射电子显微镜等对所合成的Pt/Cu BNPs进行了表征。研究了化学组成对Pt/Cu BNPs催化Na BH4水解制氢性能的影响。结果表明,所制备的Pt/Cu BNPs平均粒径为1.8~2.3nm,其催化活性远高于单金属Pt和Cu NPs的活性,其中Pt90Cu10BNP的催化活性最高,其在30℃的条件下,催化Na BH4制氢的活性可达6570mol-H2·mol-cat-1·h-1,约为相同粒径的Pt单金属NP的1.6倍。密度泛函理论的计算结果表明,Pt/Cu BNPs优异的催化性能可归因于电荷转移效应,Pt原子与Cu原子之间发生的电子转移使得Pt原子带负电而Cu原子带正电,荷电的Pt和Cu原子成为催化反应的活性中心。  相似文献   

9.
邱健豪  何明  贾明民  姚建峰 《化学进展》2016,28(7):1016-1028
金属有机骨架(metal-organic framework,简称MOF)材料的研究在近几年相当热门,因其各种优异的性质,在催化领域得到广泛应用。然而,其本身作为催化剂的研究并不多且应用较为局限。但MOF材料规则的多孔结构及较大的比表面积为负载高分散金属纳米催化剂提供了天然的物理空间,能有效阻止金属纳米颗粒的团聚及浸出;使催化剂与反应物充分接触,有利于催化反应的进行,这也是近年来MOF材料作为催化剂的一个主要研究方向。本文着重讨论通过不同的方法将金属纳米颗粒负载在MOF材料上制备双金属或多金属催化剂并在催化领域的应用。重点介绍一锅合成法、化学吸附还原负载法、金属有机化学气相沉积法、固相研磨法等制备方法,较为详细地介绍了其在氧化(醇、烷烃、烯烃和CO氧化)、加氢(羰基类化合物和烯烃类化合物加氢)、Knoevenagel缩合、光催化(光催化降解有机物和光解水产氢)等反应中的应用,讨论了这类新型功能催化剂材料所存在的问题并对其进一步发展前景做出展望。  相似文献   

10.
利用等体积浸渍法制备了Fe-Co、Fe-Ni、Mo-Co、Mo-Ni双金属催化剂(总金属含量均为10%(w,质量分数),双金属摩尔比均为1:1),考察了其在等离子体条件下氨分解活性,结果表明Fe-Ni双金属催化剂表现出较好的协同作用。在此基础上,进一步考察了Fe/Ni摩尔比对其活性的影响。结果表明:当Fe/Ni摩尔比为6/4时,氨分解活性最好,而且该双金属催化剂稳定性良好。采用N_2物理吸附、X射线衍射(XRD)、H_2-程序升温还原(H_2-TPR)和高分辨透射电子显微镜(HRTEM)对催化剂的物化性质、还原性能、微观形貌等进行了研究。结果表明:活性较好的Fe-Ni双金属催化剂中,Fe与Ni形成尖晶石结构NiFe_2O_4,该结构有利于Fe和Ni的还原,即活性组分易恢复金属态,这可能是其活性较高的原因。  相似文献   

11.
杨新春  徐强 《催化学报》2016,(10):1594-1599
液相化学氢化物以化学键的形式储存氢能,被认为是一类很有前景的化学储氢材料。液相化学氢化物的大规模应用很大程度上依赖于高效催化系统的开发。含金金属纳米颗粒在用于液相化学氢化物催化制氢中表现出优异的催化性能。本文综述了金纳米颗粒和含金异金属纳米颗粒用于液相氢化物催化制氢的最新研究进展。  相似文献   

12.
以2,3,6,7,10,11 -六羟基三亚苯(2,3,6,7,10,11-Hexahydroxytriphenylene, HHTP)为有机配体, Ni、Co为金属中心, 通过水热法制备了对应的儿茶酚酯盐(Ni-catecholate、Ni-Co-catecholate, 以下简称Ni-CAT和Ni-Co-CAT). 对其进行表征后, 选用单室反应器装置搭建微生物燃料电池(Microbial fuel cell, MFC). 将Ni-CAT和Ni-Co-CAT与炭黑以3∶1的质量比混合后应用于MFC阴极催化氧还原反应(Oxygen reduction reaction, ORR). 结果表明, Ni-Co-CAT催化的MFC反应器性能最好, 其MFC反应器的最大输出电压和功率密度分别为310 mV和190 mW/cm2, 与商业Pt/C的性能相当. Ni-Co-CAT催化MFC的极限电流密度为2.84 mA/cm2, 优于Ni-CAT的2.18 mA/cm2, 表明在Ni-CAT结构中引入Co后, MFC产电效能得到了提升. 主要原因是, Ni-Co-CAT与炭黑充分混合后, 具有了更高的孔隙率和比表面积, 其结构上的金属位点M-O6 (M=Ni或Co)提供了更多的催化活性, 使Ni-Co-CAT具有最优的电化学催化性能.  相似文献   

13.
以Ag纳米颗粒为牺牲模板,H2PdCl4为前驱体,抗坏血酸为还原剂,聚乙烯吡咯烷酮为表面活性剂,在70 ℃下采用电偶置换法结合还原法制备出AgPd双金属纳米空心球。采用紫外可见光谱、粉末X射线衍射、透射电镜结合能量色散等手段对由不同体积的0.01 mol·L-1 H2PdCl4溶液制备的产物进行结构表征。结果表明,随着H2PdCl4溶液体积的增加,产物的空心化程度逐渐升高,晶粒的尺寸逐渐增大。当 H2PdCl4溶液体积为 120 μL时,合成的 AgPd双金属纳米空心球组成和结构较为均匀,其粒径约为 25 nm,壳层厚度 2~3 nm。双金属中,由于 Ag 和 Pd 电负性的差异,电子从 Ag 转移到了 Pd,使 Pd 表面出现电子富集区,显著提高了其催化效率。将所合成的AgPd双金属以及纯金属Ag和Pd作为催化剂,分别用于硼氢化钠催化还原4-硝基苯酚的反应,发现AgPd双金属的催化性能远高于纯金属Ag和Pd,其中AgPd-120纳米空心球(H2PdCl4溶液体积120 μL)作催化剂时的反应速率常数最高,是同等尺寸纯Ag纳米球的24.0倍,纯Pd纳米立方体的14.7倍。  相似文献   

14.
以Ag纳米颗粒为牺牲模板,H2PdCl4为前驱体,抗坏血酸为还原剂,聚乙烯吡咯烷酮为表面活性剂,在70℃下采用电偶置换法结合还原法制备出AgPd双金属纳米空心球。采用紫外可见光谱、粉末X射线衍射、透射电镜结合能量色散等手段对由不同体积的0.01 mol·L-1 H2PdCl4溶液制备的产物进行结构表征。结果表明,随着H2PdCl4溶液体积的增加,产物的空心化程度逐渐升高,晶粒的尺寸逐渐增大。当H2PdCl4溶液体积为120 μL时,合成的AgPd双金属纳米空心球组成和结构较为均匀,其粒径约为25 nm,壳层厚度2~3 nm。双金属中,由于Ag和Pd电负性的差异,电子从Ag转移到了Pd,使Pd表面出现电子富集区,显著提高了其催化效率。将所合成的AgPd双金属以及纯金属Ag和Pd作为催化剂,分别用于硼氢化钠催化还原4-硝基苯酚的反应,发现AgPd双金属的催化性能远高于纯金属Ag和Pd,其中AgPd-120纳米空心球(H2PdCl4溶液体积120 μL)作催化剂时的反应速率常数最高,是同等尺寸纯Ag纳米球的24.0倍,纯Pd纳米立方体的14.7倍。  相似文献   

15.
单层分散型Pd/Ni双金属催化剂的制备及其催化加氢性能   总被引:1,自引:0,他引:1  
通过置换反应制备了Pd/Ni双金属催化剂,利用X射线衍射、CO化学吸附和吸附H2的程序升温脱附对其进行了表征,并测定了该催化剂对环己烯、苯乙烯和丙酮气相加氢反应的催化性能.结果发现,在这种催化剂中Pd原子单层分散在金属Ni的表面,因而该催化剂表现出比浸渍法制备的相同Pd含量的Pd/Ni-im和Pd/-γAl2O3催化剂更高的催化加氢活性.  相似文献   

16.
利用聚4-乙烯基吡啶(P4VP)大分子单体与苯乙烯(St)进行分散聚合一步法制备得到粒径均一的聚4-乙烯基吡啶(P4VP)-g-聚苯乙烯(PS)共聚物微球(P4VP-g-PS)。研究发现通过调控反应介质中混合溶剂的极性、P4VP大分子单体用量可控制微球粒径。将其作为Ag载体,使Ag+原位还原成Ag纳米颗粒,在催化亚甲基蓝(MB)的实验中使MB的降解量达到96. 7%。  相似文献   

17.
采用水热法,以纳米管钛酸为前驱物制备了Bi掺杂的TiO2,并利用X射线衍射、透射电子显微镜、X射线光电子能谱、紫外-可见漫反射光谱等手段对样品进行了表征. 以甲基橙的光催化降解为模型反应评价了样品的可见光催化性能. 结果表明,Bi离子并没有进入TiO2的晶格中,而是以BiOCl的形式存在. 所制得的BiOCl/TiO2复合物对甲基橙降解表现出较优越的可见光催化活性;当Bi/Ti摩尔比为1%,水热温度为130℃时,所制催化剂的光催化性能最佳,并对光催化活性提高的机理进行了讨论. 同时,该催化剂对4-氯苯酚降解也表现出较高的光催化性能.  相似文献   

18.
采用微乳法制备得到Co的纳米颗粒,X射线衍射和透射电镜分析显示产物平均粒径为15 nm,粒度分布均匀。用循环伏安、计时电流和交流阻抗方法测试了制备得到的Co纳米材料的电化学性能。实验结果表明,Co纳米颗粒对常温下碱性介质中乙醇的电化学氧化有显著的催化效果。  相似文献   

19.
液相化学氢化物以化学键的形式储存氢能,被认为是一类很有前景的化学储氢材料.液相化学氢化物的大规模应用很大程度上依赖于高效催化系统的开发.含金金属纳米颗粒在用于液相化学氢化物催化制氢中表现出优异的催化性能.本文综述了金纳米颗粒和含金异金属纳米颗粒用于液相氢化物催化制氢的最新研究进展.  相似文献   

20.
连晨帅  代蓉  田韧  吴旭  安霞  谢鲜梅 《分子催化》2019,33(4):297-308
我们采用分步浸渍法和共浸渍法制备了一系列的Ni-Cu/mSiO2催化剂.运用XRD、N2吸附-脱附、H2-TPR、SEM、TG-DTG等表征手段对催化剂反应前后的物理化学性质进行分析,催化剂对乙醇水蒸气重整(ESR)反应的催化性能通过常压固定床反应器进行评价.结果表明:催化剂的催化性能与载体上的活性组分分散有关,而活性金属的分散性与制备方法有关.共浸渍法制备的催化剂Ni14-Cu/mSiO2活性组分分散度较高,抗积碳能力与稳定性更好.在质量空速为2.7 h-1,水醇摩尔比为9,反应温度为550℃的条件下进行稳定性测试,催化剂Ni14-Cu/mSiO2测试25 h没有出现失活现象,乙醇转化率保持在100%,H2的选择性保持在70%以上,反应后的积碳含量仅为5.52%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号