首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio MODPOT /VRDDO calculations have been carried out on carcinogenic benzo(a)pyrene and its metabolites. The MODPOT /VRDDO method incorporates two very desirable options into our fast ab initio Gaussian programs: MODPOT —ab initio effective core model potentials—and a charge-conserving integral prescreening approximation which we named VRDDO (variable retention of diatomic differential overlap). For orbital energies and population analyses the MODPOT /VRDDO results agree to essentially three decimal places with completely ab initio calculations using the same valence atomic basis set. For this series of very closely related congeners a new MERGE technique was implemented that allows reuse of integrals of a common skeletal fragment. Since our program computes integrals efficiently by blocks, reusing information common to the block, it was more difficult to implement a MERGE technique than for integral programs which calculate the integrals one-byone. The MODPOT /VRDDO calculations were performed for benzo(a)pyrene (BP), BP oxides, BP dihydrodiols, and BP dihydrodiol epoxides. The metabolites investigated were BP-7,8-oxide, BP-4,5-oxide, BP-7,8-dihydrodiol [cis(e, a), cis(a, e), trans(e, e), and trans(a, a)], and BP-7,8-dihydrodiol-9,10-epoxide [β,β,β (the most stable), β,β,α; α,α,β, and α,α,α all derived from cis-BP-7,8-dihydrodiol and β,α,β; α,β,β and α,β,β derived from trans-BP-7,8-dihydrodiol]. Several different conformations were calculated for each of the BP dihydrodiols and BP dihydrodiol epoxides. Calculations were carried out for the opening of the C9—O—C10 epoxide ring both toward C9 and C10 for the, most stable β,β,β isomer of BP-7,8-dihydrodiol-9,10-epoxide. Opening the epoxide ring between C10 and O leads to a more stable intermediate than opening the epoxide ring between C9 and C10. However, there is no buildup of positive charge in C10 as has been postulated by some cancer researchers, but rather the C10 becomes slightly more negative. Nor is there a buildup of negative charge on the O atom. rather it becomes slightly less negative. As the epoxide ring is opened further than 90° for the O—C9—C10 or O—C10—C9 angles, there appears to be a possible mixing of configurations that is being investigated further.  相似文献   

2.
Ab initio MODPOT/VRDDO/MERGE calculations were carried out on carcinogenic 3-methylcholanthrene (3-MCA) and its metabolites. The results for 3-MCA were compared to our earlier similar calculations for carcinogenic benzo(a)pyrene (BP). Both compounds 3-MCA and BP are carcinogenic and are metabolically activated by similar mechanisms but in different positions. Both the calculated wave functions for 3-MCA and BP and the electrostatic molecular potential contour maps generated from these wave functions correctly reflect the similarity of mechanisms of metabolic activation and the differences in position. Our calculated results both for BP and for 3-MCA reflect accurately their experimentally observed behavior. Thus this combination of theoretical techniques can be used with confidence to describe the behavior of the polycyclic aromatic hydrocarbons (PAH's) and their metabolites. The ab initio MODPOT/VRDDO method incorporates two very desirable options into our fast ab initio Gaussian programs: MODPOT –ab initio effective core model potentials—and a charge-conserving integral prescreening approximation which we named VRDDO (variable retention of diatomic differential overlap). For orbital energies and population analysis the MODPOT/VRDDO results agree to essentially three decimal places with completely ab initio calculations using the same valence atomic basis set. For this series of very closely related congeners our recent MERGE technique which allows reuse of integrals from a common skeletal fragment was used. The ab initio MODPOT/VRDDO/MERGE calculations were carried out for 3-MCA, 3-MCA oxides, 3-MCA dihydrodiols, and 3-MCA dihydrodiolepoxides. The metabolites investigated were 3-MCA 9,10-oxide; 3-MCA 7,8-oxide; 3-MCA 9,10-dihydrodiol [trans(axial, axial); trans(equatorial, equatorial); cis(axial, equatorial); cis(equatorial, axial)]; and 3-MCA 9,10-dihydrodiol–7,8-epoxide [for both conformations A and B of the dihydrodiol and for all stereoisomers of the dihydrodiolepoxides relative to below and above the plane: ααα, and ααβ αβα αββ βαα βαβ ββα and βββ (most stable)]. Calculations were also carried out for opening of the C7? O? C8 epoxide ring both towards C7 and C8 for the most stable isomer Aβββ (above the ring). Opening the epoxide ring between C7 and O leads to a more stable intermediate than opening the epoxide ring between C8 and O. Again, however, as with opening the epoxide ring in BP 7,8-dihydrodiol–9,10-epoxide there is no buildup of positive charge on C7 in the 3-MCA metabolites as postulated by some cancer researchers, but rather the C7 becomes slightly more negative. Nor is there a buildup of negative charge on the O atom, but rather it becomes slightly more positive. As the epoxide ring is opened further than 90° for the O? C7? C8 or O? C8? C7 angles, there appears to be a possible mixing of configurations that is being investigated further.  相似文献   

3.
The transport of C6H5O? (or similarly charged moieties) through a lipoidal membrane may possibly be facilitated by forming complexes with the neutral compound. Thus, theoretical studies were performed on the model [C6H5OH ?OC6H5]? molecular complex to obtain some information concerning the possible molecular and electronic structure of such complexes. Ab initio MODPOT /VRDDO SCF calculations were carried out on the neutral-anion dimer [C6H5OH ?OC6H5] to optimize the equilibrium geometry. Electrostatic molecular potential contour maps have been generated from the ab initio MODPOT /VRDDO results in the molecular plane and in the plane perpendicular to the molecular plane and intersecting the hydrogen bond O ?H? O. Difference maps have also been generated showing the change of potential on complex formation. There is a decrease of electrostatic interactions of the phenoxide anion upon complex formation with the neutral phenol. Counterpoise corrections for basis set size could not be made since calculation of the phenoxide anions in the basis set of the phenol plus the phenoxide anion led to an excited state for the phenoxide anion. This behavior is somewhat similar to that occurring in the stabilization method for excited states of negative ions as the size of the basis set is increased.  相似文献   

4.
We report the geometry-optimized total energies and bond distances for the closo-carborane isomers 3,5-C2B6H8, 1,7-C2B7H9, and 1,2-C2B7H9 calculated by the ab initio SCF MO method using the STO -3G basis set. Relative energies are compared with those of the other carborane isomers in the 8- and 9- atom classes. These results complete the set of calculations at the same level of theory for all deltahedral carborane isomers except for those of the 11-atom class.  相似文献   

5.
Quantum chemical results will be presented on drugs, carcinogens, teratogens, and endogenous biomolecules using our new nonempirical ab initio MODPOT /VRDDO method, which incorporates as options to our ab initio LCAO -MO -SCF /CI programs ab initio effective core model potentials (MODPOT ) permitting one to calculate only the valence electrons explicitly yet accurately and an integral prescreening technique (VRDDO , variable retention of diatomic differential overlap) especially effective for spatially extended molecules. For molecules of the size of those of interest the MODPOT /VRDDO calculations run an order-of-magnitude faster than with our own fast ab initio programs and still retain accuracy to the third decimal place for the valence electron properties. We have also just implemented a new efficient MERGE technique which allows us to reuse integrals from a common skeletal fragment and only to have to recalculate those for a new atom or group or a change in its position. Examples will be presented of the use of this technique on a carcinogenic polycyclic aromatic hydrocarbon and its metabolites. The pKa's, oil-water partition, and drug distribution coefficients as a sensitive function of pH have been measured for a number of drugs as well as for relevant endogenous biomolecules. The pH dependence of the lipophilicities of such molecules has profound implication on appropriate use of such data in QSAR studies.  相似文献   

6.
The total Mulliken charges on the carbon atoms of the vinyl group, populations of S-trans-(N1)conformers, and internal rotation energies were calculated ab initio (HF/6-31G**, MP2/6-31G**, and MP2/6-31G**//AM1) for a series of 2R-5-vinyltetrazoles (R = CH3, C2H5, i-C3H7, t-C4H9, C6H5). The calculation results were compared to the available experimental data.  相似文献   

7.
Ab initio MODPOT /VRDDO /MERGE calculations have been carried out for all the different position isomers of nitrocubane from mononitrocubane through octanitrocubane for a perfect symmetrical cubic cubane skeleton and for mononitrocubane through septanitrocubane for the almost cubic experimentally determined cubane skeleton. These calculations were carried out with our own rapid efficient ab initio programs which also incorporate a number of desirable computational strategies for calculations on large molecules. The skeletal total overlap population of the cubane skeleton (a theoretical index we showed years ago to be sensitive and predictive of stability of energetic molecular frameworks) indicates that successive nitration seems to increase the stability of the cubane skeleton. Successive nitration also seems to increase the total overlap population of the C? NO2 bond. There are subtle differences depending on the exact positional isomer for a constant number of nitro groups—but the overall trend is definite. We have also generated electrostatic molecular potential contour (EMPC ) maps around these nitrocubanes. These maps are indicative of preferred positions of electrophilic and nucleophilic attack as a function of the number of nitro groups or their positions. These EMPC maps can also indicate, to a first approximation, a limit on how close these molecules may be able to approach each other in a crystal.  相似文献   

8.
We propose a Cohen-type bond order analysis in terms of orthogonalized atomic basis functions which can be used to analyze NDO wave functions of large organic and metal–organic molecules. It is shown that for small molecules the results gained with this method are in excellent agreement with the same analysis based on ab initio STO -3G wavefunctions. For large planar aromatic systems these all-valence electron bond orders are found to be a consistent generalization of the π-bond order. A simple relation between these bond orders and the corresponding covalent bond energies is established. The method can be easily extended to study excited state multiconfiguration wave functions. We present calculations for C2H2, C2H4, C2H6, and Mn2(CO)10. The results indicate that the method can be used to discuss the photochemistry of organic and metal–organic compounds.  相似文献   

9.
Quantum chemical ab initio MODPOT /VRDDO calculations have been carried out on the following aminonitrobenzenes for which crystal structures had been determined experimentally: 4-nitroaniline; N,N-dimethyl-p-nitroaniline; 2,4,6-trinitroaniline; 1,3-diamino-2,4,6-trinitrobenzene (DATB—Form I); 1,3,5-triamino-2,4,6-trinitrobenzene (TATB); 2,3,4,6-tetranitroaniline; N-methyl-N,2,4,6-tetranitroaniline (Tetryl); and N-(β,β,β-trifluoroethyl)-N,2,4,6-tetranitroaniline. These quantum chemical calculations were performed on the molecules in their conformations as found in their crystal structures. The calculations were carried out with our own ab initio programs which also incorporate as options several desirable features for calculations on large molecules: ab initio effective core model potentials (MODPOT) which enable calculations of valence electrons only explicitly, yet accurately, and a charge conserving integral prescreening evaluation (which we named VRDDO-variable retention of diatomic differential overlap) especially effective for spatially extended molecules. Aminonitrobenzenes are especially interesting since there are inherent intramolecular ring distortions and deviations from planarity and intramolecular hydrogen bonds as well as intermolecular hydrogen bonds causing further deviations from planarity. The theoretical indices resulting from the quantum chemical calculations are relevant to a number of properties and behavioral characteristics of these molecules, both intramolecular and intermolecular. The charges on the atoms [from the gross atomic populations (GAP 's)] are needed for calculation of the atomic multipole–atomic multipole electrostatic contributions (a dominant factor) to the intermolecular interaction energies. These electrostatic interaction energies are part of the input necessary for calculations on the crystal packing and densities of these molecules. These GAP 's are also of value in interpreting the experimental photoelectron and ESCA spectra of these molecules. The total overlap populations (TOP 's) between atoms are related to the inherent bond strengths and can serve as a quantitative replacement for the old empirical bond length-bond order-bond energy relationship still used by explosives chemists to identify the “target bonds” (the weakest bonds). The TOP 's are of considerable value in predicting and tracing initiation and subsequent steps of explosive phenomena. The molecular orbital energies of the lowest unoccupied orbitals are of interest since nitroexplosives have been implicated in testicular toxicity and the initial metabolic activation appears to proceed through a one-electron reduction of the nitroexplosive.  相似文献   

10.
The calculated result obtained with MM2(87) for the rotation of the isopropyl group in 3-methyl-1-butene is not in agreement with experimental data. In order to reparametrize the Csp2-Csp3-Csp-Csp3 torsional angle, 3-methyl-1-butene and 1-butene have been studied by molecular mechanics (MM2(87)) and ab initio (MP2/6-31G* and MP3/6-31G*) calculations. The reparametrization of the torsional angle gives calculated results from MM2(87) in agreement with experimental data and ab initio calculations for both 3-methyl-1-butene and 1-butene. The calculated barriers for the rotation of alkyl groups in alkylbenzenes are improved with these new parameters.  相似文献   

11.
Ab initio calculations with a minimal (STO -3G) basis set on a number of sulfur-containing molecules are used to show that Koopmans' theorem and minimal basis calculations may be a simple but adequate way of obtaining inner-shell ionization potentials and chemical shifts of large molecules. The x-ray photoelectron spectrum of (C6H5)2SNSO2C6H4CH3 is discussed with reference to an ab initio SCF minimal basis calculation on the model molecule H2SNSO2H.  相似文献   

12.
We have explored two areas of approximately rigorous calculations for computing nonempirical wave functions for heavy and/or large molecules orders of magnitude faster than with conventional ab-initio methods but with the same chemical accuracy. First, we have developed and used a series of programs (starting from our new fast sets of ab-initio Gaussian SCF and SCF -CI programs) incorporating ab-initio effective core model potentials (MOD -POT ) which allow one to treat only the valence electrons explicitly, plus a charge conserving integral prescreening, which cuts down significantly on the number of integrals that have to be calculated, stored, or processed for a large molecule. We have named this latter procedure VRDDO (variable retention of diatomic differential overlap). With these MODPOT and MODPOT /VRDDO methods we have explored a variety of small, medium, and large systems ranging from electron affinities of atoms through to molecules of biological interest and large boron hydrides. The results compared to ab-initio SCF or SCF /CI calcuations are very good, usually within 0.001 to 0.002 a.u. for orbital energies and gross atomic populations (GAPS ) and even better along potential energy curves. Secondly, we have explored the use of the MS -Xα method for less conventional molecules and properties than those for which it is customarily employed.  相似文献   

13.
Aromatic-solvent-induced 11B NMR shifts (11B ASIS effects), observed for closo-2, 4-C2B5H7 and its 5-chloro and 5, 6-dichloro derivatives, are correlated to ab initio STO-3G derived atom charge densities. A near linear relationship is found upon incorporating nearestneighbor charge density contributions.  相似文献   

14.
Various substituted aminodiphenyldiacetylenes of the type with X = C3H7, C5H11, F or NO2 and R, R' = H, CH3-C6H13 were synthesized and their mesomorphic properties determined. Semi-empirical and ab initio quantum chemical calculations using AM1, 421G and 631G* suggested that the amino group would increase the dielectric anisotropy and optical birefringence as compared to the alkyl chain. Mesomorphic properties were found to be poor with the maximum nematic phase range being 44.8°C and many of the compounds having no nematic phase. Both melting temperatures and enthalpies for those having nematic phases were too high to form good eutectic mixtures.  相似文献   

15.
In the title compounds, C21H30O4, (I), and C23H34O4, (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis‐(5β,10β)‐fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5β,6β‐epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree–Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.  相似文献   

16.
We investigated structures, vibrational frequencies, and rotational barriers of disilane (Si2H6), hexafluorodisilane (Si2F6), and hexamethyldisilane (Si2Me6) by using ab initio molecular orbital and density functional theories. We employed four different levels of theories (i.e., HF/6–31G*, MP2/6–31G*, BLYP/6–31G*, and B3LYP/6–31G*) to optimize the structures and to calculate the vibrational frequencies (except for Si2Me6 at MP2/6–31G*). MP2/6–31G* calculations reproduce experimental bond lengths well, while BLYP/6–31G* calculations largely overestimate some bond lengths. Vibrational frequencies from density functional theories (BLYP/6–31G* and B3LYP/6–31G*) were in reasonably good agreement with experimental values without employing additional correction factors. We calculated the ΔG(298 K) values of the internal rotation by correcting zero-point vibration energies, thermal vibration energies, and entropies. We performed CISD/6–31G*//MP2/6–31G* calculations and found the ΔG(298 K) values for the internal rotation of Si2H6, Si2F6, and Si2Me6 to be 1.36, 2.06, and 2.69 kcal/mol, respectively. The performance of this level was verified by using G2 and G2(MP2) methods in Si2H6. According to our theoretical results, the ΔG(298 K) values were marginally greater than the ΔE(0 K) values in Si2F6 and Si2Me6 due to the contribution of the entropy. In Si2H6 the ΔE(0 K) and ΔG(298 K) values were coincidently similar due to a cancellation of two opposing contributions between zero-point and thermal vibrational energies, and entropies. Our calculated ΔG(298 K) values were in good agreement with experimental values published recently. In addition, we also performed MM3 calculations on Si2H6 and Si2Me6. MM3 calculated rotational barriers and thermodynamic properties were compared with high level ab initio results. Based on this comparison, MM3 calculations reproduced high level ab initio results in rotational barriers and thermodynamic properties of Si2H6 derivatives including vibrational energies and entropies, although large errors exist in some vibrational frequencies. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1523–1533, 1997  相似文献   

17.
The procedure for deorthogonalization (D) of atomic orbitals in the semiempirical CNDO approach is reviewed. For comparative studies, CNDO/2, CNDO/2D, and STO -3G calculations of molecular dipole moments and Mulliken populations are carried out on 35 prototype molecules containing H, C, N, O, and F atoms. The calculated values are assessed on the basis of how well they agree with experimental trends, chemical bonding theories, and ab initio molecular orbital (MO) values. Results of analyses indicate that the CNDO/2D values for dipole moments are in reasonable agreement with experimental values, and those for net atomic charges and electron populations bear greater resemblance to the ab initio (STO -3G and 6-31G**) values than the original CNDO/2 values. These findings, together with those of previous investigators, demonstrate unequivocally the advantages of incorporating deorthogonalization into routine CNDO/2 or INDO calculations as a means to obtain reasonable estimates of charge distributions.  相似文献   

18.
The molecular and electronic structures of closo-hexaboranes B6H6 2–, B6H7 , and B6H8 and closo-heterohexaboranes XYB4H4 (X = Y = CH, N; X = BH, Y = CH, N, NH, O) were studed by the ab initio (MP2(full)/6-311+G**) and density functional (B3LYP/6-311+G**) methods. The bridging H atoms in closo-hexaboranes B6H7 and B6H8 can undergo facile low-barrier migrations around the boron cage (the barrier heights are about 10—15 kcal mol–1). All heteroboranes having octahedron-like structures with hypercoordinated N and O atoms are rather stable and can be the subject of synthetic research efforts.  相似文献   

19.
The conformational stability, barriers to internal rotation, and fundamental vibrational frequencies of cyclopropylmethyl ketone, c-C3H5C(CH3)O, have been obtained from Hartree—Fock ab initio calculations with the RHF/3-21G and RHF/6-31G* basis sets, as well as the 6-31G* basis set with electron correlation at the MP2 level, and the results are compared to those obtained from experiment. The data are consistent with the predominant rotamer having the cis conformation (carbonyl bond cis to the ring). A second form, having a “near” trans structure, is calculated to have a larger total dipole moment than the cis form, which accounts for its increased abundance in the liquid compared to that in the gas. A complete vibrational assignment is proposed based on experimental data and normal coordinate results from the ab initio calculations. The asymmetric torsional barrier has been calculated to be approximately 2000 cm−1 and this result along with others is compared to the corresponding data obtained from both experiment and theory for the cyclopropylcarbonyl halides.  相似文献   

20.
Ab initio calculations at the STO-3G level were performed on almost all of the possible isomers for the entire series of closo-carboranes, C2Bn-2Hn, 5 ? n ? 12. Geometry optimizations using the gradient method were also included in all calculations. We report here the relative energies obtained for the various isomers as well as the optimized structures. These calculations confirm our previous predictions of relative stabilities obtained from topological charge stabilization. Comparisons of our structures with those from experimental data provide us with a measure of reliability for bond distances obtained using ab initio SCF MO calculations at the STO-3G level. Results from the geometry optimization substantiated the experimentally known fluxional behavior of the 8 and 11 atom polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号