首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon black is widely used as an active filler in the rubber industry to improve the physical properties of rubber. The surface energy of carbon black is high compared to that of various elastomers like styrene–butadiene rubber (SBR), butadiene rubber (BR) and ethylene–propylene–diene rubber (EPDM). The work aims at reducing the surface energy of carbon black by modifying its surface for application especially in rubber blends. The present paper looks into the possibility of using plasma polymerisation of acetylene as a surface modification technique for carbon black in comparison with silica. Thermogravimetric analysis, wetting behaviour with various liquids of known surface tension and time of flight secondary ion mass spectrometry (ToF-SIMS) were used to characterise the carbon black before and after surface modification. The study shows that surface modification of carbon black by plasma polymerisation is difficult in comparison with silica, unless treated for long duration. The mechanistic aspects of the surface modification and the importance of active sites on the carbon black surface for effective modification are discussed in the paper.  相似文献   

2.
The network formed by fillers has great influence on the mechanical properties of rubber materials. To understand the formation of network by carbon black,silica,and carbon black/silica mixing fillers in rubber and its influence on the properties of rubber,isoprene rubber/filler composites with different filler loadings are prepared and their micromorphology,rheological and tensile properties are investigated. It is found that the dispersion of fillers is better in rubber after cure than that in rubber before cure for all three rubber systems,and the filler size of silica is smaller than that of carbon black,but the aggregation is more severe in silica filled rubber system. In mixed filler system,the two fillers tend to aggregate separately, leading to the low modulus at small strain than that in single filler system. With the increase of the filler loading,the tensile strength increases first and then decreases,the elongation at break decreases,and the temperature rise in compression flexometer tests increases. Moreover,the temperature rise in mixed filler system is higher than that in single filler system at high filler loading. © 2022, Science Press (China). All rights reserved.  相似文献   

3.
Formation of bound rubber is affected by the physical structure and surface chemistry of filler and the property of rubber. Variation of the bound rubber formation in styrene‐butadiene rubber compounds filled with silica and/or carbon black was studied. Influence of temperature on extraction of loosely bound rubber was also investigated. For the both silica and carbon black‐filled compounds, the bound rubber content increases with increase in the silica content ratio. The bound rubber content decreases with increasing the extracting temperature. The loosely bound rubber content of the silica‐filled compound is higher than that of the carbon black‐filled one. Activation energy for the extraction of the unbound and loosely bound rubbers becomes higher as the total filler content increases. The activation energy of the silica‐filled compound is higher (almost double the value) than for the carbon black‐filled one. Copyright­© 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Ball-milling of N660 carbon black and graphite causes a deep activation of its surface activity which can be measured by a significant increase in the bound rubber level and in the amount of grafted rubber in comparison to the pristine untreated samples. The bound rubber measurement has been done also on a natural rubber masterbatch filled with extracted fullerene carbon black (EFCB). Also in this case extremely high levels of rubber grafting have been achieved in comparison to pure untreated graphite. It is discussed and demonstrated that the fullerene-like nanostructures in carbon blacks play a key role in the formation of bound rubber phenomenon and in grafting natural rubber on carbon black surface.  相似文献   

5.
Positron lifetime spectra and Doppler broadening of the annihilation line were measured for samples of carbon black/polyethylene and polypropylene composites with varying amount of the filler. Tensile strength, resistivity, EPR resonance were studied in addition to have the samples better characterized. The decrease in resistivity of samples, accompanied by the worsening of mechanical properties, the drop both in the intensities of Ps lifetime components in the lifetime spectra and in the line-shape parameter values, were observed with increase in the carbon black content. The presence of radicals associated with aromatic structure of the carbon sheets and others associated with the surface oxygen functional groups was established by EPR measurements for the carbon blacks being used as fillers. The carbon black of the highest specific surface area influenced the measured characteristics the most.  相似文献   

6.
Rubber compounds are reinforced with fillers such as carbon black and silica. In general, filled rubber compounds shows smooth rheological behavior and mechanical properties. Variation in rheological behavior and mechanical properties was studied in terms of the filler composition using natural rubber compounds filled with both carbon black and silica CB/Si = 0/60, 20/40, 30/30, 40/20 and 60/0 phr (parts per hundred rubber is parts of any non-rubbery material per hundred parts of raw gum elastomer (rubbery material)). The rheological behaviour can be showed in measurement of Mooney viscosity and cure time. The Mooney viscosity of rubber compounds increase with the increasing the carbon black in the compounds. The compound filled with CB/Si of 30/30 and 60/0 showed abnormal rheological behaviour in which the cure time decreased suddenly and the increased at certain ratio during the measurement. The mechanical properties such as hardness, abrasion resistance and tensile stress at 300% elongation were studied. In the hardness and abrasion resistance measurement, the higher ratio CB/Si decrease contribution of silica, which resulting smaller of hardness value. Ratio CB/Si 40/20 gives an optimum filler blended. It is also clearly understood that higher abrasion resistance mainly due to the lower hardness value under the same condition. The tensile stress at 300% elongation of rubber compound increased with the increasing carbon black filler.  相似文献   

7.
Effects of carbon filler on the sorption and diffusion of carbon dioxide in natural rubber and in styrene-butadiene rubber have been studied. Sorption isotherms conform to Henry's law in unfilled rubber and to Langmuir's law in carbon black. The isotherms in filled rubber exhibit a combination of the two sorption modes. The Henry's law solubility parameter kD increases with carbon filler content; the Langmuir saturation constant CA initially is constant with filler level, but then decreases abruptly when carbon particles begin to aggregate. The diffusion coefficient decreases with increasing filler content, presumably owing to geometric effects and to polymer chain immobilization in the interfacial regions.  相似文献   

8.
The effect of Alkanolamide (ALK) loading on properties on three different types of carbon black (CB)-filled rubbers (SMR-L, ENR-25, and SBR) was investigated. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK gave cure enhancement, better filler dispersion and greater rubber–filler interaction. ALK also enhanced modulus, hardness, resilience and tensile strength, especially up to 5.0 phr of loading in SMR-L and SBR compounds, and at 1.0 phr in ENR-25 compound. Scanning electron microscopy (SEM) proved that each optimum ALK loading exhibited the greatest matrix tearing line and surface roughness due to better rubber - filler interaction.  相似文献   

9.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

10.
Specific features of the structure of a rigid framework composed of aggregated carbon black particles in rubber were considered. The volume fractions of the main components of the material—the filler, the binder, the layer enveloping carbon black particles, and the polymer entrapped by aggregates—were calculated. It was found that the volume fraction of the polymer in the layer around filler particles can be very high. The average number of contacts between neighboring aggregates in rubber with a high filler content is six. During deformation, the structure undergoes strong changes, so that neighboring aggregates can move from each other or, conversely, the remote aggregates can approach each other.  相似文献   

11.
This paper is concerned with the development of a hydrodynamic model for the reinforcement of rubber by colloidal fillers such as silica and carbon black. Each fractal aggregate is replaced by an equivalent effective sphere, and the reinforcing ability of the latter is estimated using the Christensen‐Lo solution of the “three‐phase composite sphere model”. With a single adjustable parameter, the model allows a quantitative interpretation of the small‐strain modulus of rubber loaded with up to 50 PHR of N234 carbon black, which falls just below the filler overlap concentration. No additional contributions to the small‐strain modulus by filler–filler “interactions” are needed to interpret the data.

A branched filler aggregate made up of spherical primary particles (black) and the effective sphere replacing it (gray).  相似文献   


12.
Rubber articles derive most of their mechanical properties from the admixture of reinforcing fillers. Most commonly, carbon black is used as reinforcing filler. If silica is used instead, tyres made with such rubber compounds may exhibit a rolling resistance reduction by ca. 30%, which translates in substantial fuel savings of a car. Such silicas are far more difficult to mix with rubber than carbon black. Coupling agents are used as a surface modification of the filler to enhance compatibility with the polymer. Additionally they improve the ease of mixing with the rubber. The development of proper coupling agents combined with improved mixing techniques has contributed to the final break-through of the silicareinforced “Green Tyre”.  相似文献   

13.
Bound rubber in a filled rubber compound is formed by physical adsorption and chemisorption between the rubber and the filler. Styrene–butadiene rubber (SBR) is composed of four components of styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units. Filler–polymer interactions in both silica and carbon black‐filled SBR compounds were studied by analyzing microstructures of the bound rubbers with pyrolysis‐gas chromatography. Differences in the filler–polymer interactions of the styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units were investigated. The filler–polymer interactions of the butadiene units were found to be stronger than that of the styrene unit. The interactions of the cis‐1,4‐ and trans‐1,4‐units were stronger with carbon black than with silica, whereas the 1,2‐unit interacted more strongly with silica than with carbon black. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 439–445, 2001  相似文献   

14.
《European Polymer Journal》1986,22(6):499-503
Penetration and permeation of water into polyethylene based polymers filled with carbon blacks was studied as a function of composition using radiochemical and gravimetric methods. The water absorption capacity of the filled polymers depends mainly on the oxygen content of the carbon black particles and the rate of penetration is inversely proportional to the filler loading. A mechanism of water diffusion consistent with permeation experiments is proposed.  相似文献   

15.
Rubber compounds are filled with reinforcing fillers to improve their physical properties. Carbon black and silica have different surface chemistries to each other. Differences in properties of carbon black‐ and silica‐reinforced styrene‐butadiene rubber (SBR) compounds were studied. Variation of properties of carbon black‐ or silica‐filled compounds with the filler content was also investigated. The silica‐filled compounds without any coupling agent and dispering agent were prepared to investigate the influence of polar materials‐adsorption on the silica surface. Viscosity and crosslink density increased with increase of the filler content. Hardness, modulus, tensile strength, and wear property were improved more and more by increasing the filler content. Viscosity of the silica‐filled compound was higher than that of the carbon black‐filled one. Cure rate of the silica‐filled compound became slower as the filler content increased, while that of the carbon black‐filled one became faster. Difference in properties between the carbon black‐ and silica‐filled compounds were explained by the poor silica dispersion and the adsorption of cure accelerator on the silica surface. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
宋义虎 《高分子科学》2017,35(11):1436-1446
The performance of reinforced rubber compounds depends on the filler composition while the reinforcement and dissipation mechanisms still remain unclear.Herein linear and nonlinear dynamic rheological responses of carbon black/silica hybrid filler filling nature rubber compounds are investigated.The rheological contributions of dynamically retarded bulk phase and filler network are revealed to be crucial at high and low frequencies,respectively,and the bulk phase is shown to be of vital importance for the occurrence of nonlinear Payne effect at mediate frequencies.A framework for simultaneously solving reinforcement and dissipation varying with filler composition and content is suggested,providing a new perspective in understanding the filling effect for manufacturing high-performance rubber materials.  相似文献   

17.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

18.
橡胶的填料问题一直是人们的研究热点,针对炭黑和白炭黑在橡胶生产中存在的污染问题,本文选用成分结构与白炭黑类似的硅藻土来填充各种橡胶。首先对硅藻土进行了改性,并对不同改性剂改性硅藻土用于填充橡胶进行了研究。结果表明2.5份偶联剂Si69的改性效果最佳。通过机械共混法制备了改性硅藻土/橡胶纳米复合材料,通过力学性能测试确定了比较适合硅藻土填充的橡胶是氟橡胶、三元乙丙橡胶和丙烯酸酯橡胶。绿色环保且价格低廉的硅藻土可以替代白炭黑增强填充氟橡胶、三元乙丙橡胶和丙烯酸酯橡胶。  相似文献   

19.
The aim of this paper is to demonstrate that the stress–strain behavior of natural rubber reinforced with short pineapple leaf fiber (PALF) can easily be manipulated by changing the cross-link density and the amount of carbon black (CB) primary filler. This gives more manageable control of mechanical properties than is possible with conventional particulate fillers alone. This type of hybrid rubber composite displays a very sharp rise in stress at very low strains, and then the stress levels off at medium strains before turning up again at the highest strains. The composites studied here contain a fixed amount of PALF at 10 part (by weight) per hundred rubber (phr) and varying carbon black contents from 0 to 30 phr. To change the cross-link density, the amount of sulfur was varied from 2 to 4 phr. Swelling ratio results indicate that composites prepared with greater amounts of sulfur and carbon black have greater cross-link densities. Consequently, this affects the stress–strain behavior of the composites. The greater the cross-link density, the less is the strain at which the stress upturn occurs. Variations in the rate of stress increase (although not the stress itself) in the very low strain region, while dependent on fillers, are not dependent on the crosslink density. The effect of changes in crosslinking is most obvious in the high strain region. Here, the rate of stress increase becomes larger with increasing cross-link density. Hence, we demonstrate that the use of PALF filler, along with the usual carbon primary filler, provides a convenient method for the manipulation of the stress–strain relationships of the reinforced rubber. Such composites can be prepared with a controllable, wide range of mechanical behavior for specific high performance engineering applications.  相似文献   

20.
Natural rubber obtained from a milky colloid (latex) extras mainly from the tree Hevea Brasiliensis is approximately 95% cis-polyisopren has important physical properties. Among its shortcomings are resistance to aging and thermal stability that limits its applications. The use of fillers in rubber is almost as old as the use of rubber itself. ZnO originally used for whiteness was the first “active” filler. In 1904 carbon black was discovered and since then became the most important powder used in rubber technology. Recently various mineral and organic nanoparticles are studied as reinforcements for elastomers in view -with minimum amounts – to achieve required properties. Natural rubber nanocomposites bring together mechanical and thermal properties from the rubber matrix and special characteristics of the nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号