首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磁性Fe_3O_4微粒表面有机改性   总被引:11,自引:0,他引:11  
在分散聚合法制备复合磁性微球过程中 ,采用硅烷偶联剂 KH- 570对磁性 Fe_3O_4微粒进行表面改性 .红外光谱 (FTIR)、光电子能谱 (XPS)分析结果表明 ,偶联剂与磁性微粒表面以化学键形式结合 .改性后 ,Fe_3O_4微粒与单体及其聚合物之间具有良好的亲和性 ,采用改性后的磁性微粒可以显著改善磁性微球的性能指标 .  相似文献   

2.
采用共沉淀法制备磁性Fe_3O_4纳米粒子,然后在乳化体系中,以戊二醛为交联剂,通过席夫碱反应制备了改性磁性壳聚糖微球(Fe_3O_4@CS)以及聚乙烯亚胺(PEI)改性磁性壳聚糖微球(Fe_3O_4@CS/PEI)。采用红外光谱、X射线粉末衍射、磁滞回线测定、扫描电子显微镜和动态光散射对微球的结构、粒径以及磁性进行了表征,通过紫外-可见分光光度计研究了微球对布洛芬的吸附能力和重复利用率。结果表明,在微球制备过程中发生的席夫碱反应不会对纳米Fe_3O_4的晶型产生影响。微球均呈现出规整的球形,分布较窄,且具有一定的磁响应性,对布洛芬的吸附模型符合Langmuir吸附等温模型和二级动力学模型。随着PEI用量的增加,微球对布洛芬的吸附能力增强,经Langmuir吸附方程拟合的最大吸附量为138.63 mg/g。同时,微球具有良好的重复使用效率,重复5次后仍能达到初始吸附量的90%以上。  相似文献   

3.
以水热法制备的高磁饱和强度Fe_3O_4纳米颗粒为核,正硅酸乙酯(TEOS)为前驱体,采用改进的St觟ber法,制备介孔SiO_2包覆Fe_3O_4磁性核壳复合微球。利用XRD、SEM、TEM、N2吸附-脱附、FTIR和VSM对制备样品的物相结构、形貌和磁性能进行了测试表征。研究结果表明,制备的复合材料呈球形,粒径分布均一,材料的比表面积和磁饱和强度分别为413 m2·g-1和68.93emu·g-1。研究了TEOS的添加量对复合微球形貌的影响,随着TEOS添加量的增加,SiO_2壳层增厚,复合粒子形貌均匀,饱和磁化强度有所下降,仍具有良好的超顺磁性。在此基础上,通过接枝法在复合微球的表面接枝-NH2,制备了一种新型磁性纳米吸附剂(Fe_3O_4@SiO_2@m SiO_2-NH2),进而研究了其对水中重金属离子Cr(Ⅵ)的吸附性能。通过动力学拟合,Fe_3O_4@SiO_2@m SiO_2-NH2对Cr(Ⅵ)的吸附过程是准二级动力学模型占主导地位,探究了该材料对Cr(Ⅵ)的吸附过程和吸附机理。结果表明,其吸附机理及吸附容量与Cr(Ⅵ)的离子形态及-NH2有关,并通过吸附剂与吸附质之间的电子共用或静电吸附实现。  相似文献   

4.
以γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH-570)改性的Fe_3O_4纳米粒子为载体,以乙草胺(acetochlor)为模板分子,采用表面分子印迹技术制备乙草胺磁性分子印迹聚合物(Fe_3O_4@SiO_2@MIP)。通过红外光谱和扫描电镜对聚合物的结构和形貌进行表征;通过高效液相色谱(HPLC)检测技术考察磁性印迹聚合物的吸附性能。结果表明,该印迹聚合物对乙草胺具有良好的选择识别能力,其最大吸附量为86.61 mg·g~(-1),并将其作为固相萃取剂成功应用于稻田水中乙草胺的分离、富集。  相似文献   

5.
用乙二醇为溶剂,三氯化铁和尿素为起始反应试剂,柠檬酸为粒子表面修饰剂,通过一步溶剂热法制备Fe3 O4纳米粒子,然后以一定浓度配比的Na2 SO4与NaOH混合液为沉淀剂,通过沉淀聚合法制备Fe3 O4/壳聚糖复合纳米粒子吸附剂。利用X射线衍射仪(XRD)、红外光谱(IR)、透射电子显微镜(TEM)和物理特性测试仪(PPMS)表征样品的结构、形貌和磁性能,并使用原子吸收分光光度计(AAS)评价吸附剂对Pb2+的吸附去除性能。结果表明,Fe3O4/壳聚糖复合纳米粒子吸附剂是由磁性Fe3O4纳米球形粒子和鱼卵状壳聚糖纳米粒子聚集体复合而成,该吸附剂对Pb2+有很好的吸附去除性能,它对Pb2+的等温吸附线符合Langmuir模型,在温度298k和pH值5时,吸附剂对Pb2+的饱和吸附量为105.5mg/g。  相似文献   

6.
采用可逆加成—断裂链转移法(RAFT)合成了嵌段共聚物聚(苯乙烯-co-马来酸酐)-b-聚乙二醇甲基丙烯酸酯(PSMA-b-PMAPEG),并以该嵌段共聚物为软模版,以盐酸多巴胺(DA)作为碳源,将其包覆在Fe_3O_4纳米颗粒上,再经高温灼烧得到具有多孔结构的Fe_3O_4/C磁性复合微球.通过扫描电镜(SEM)、红外光谱(FT-IR)、X射线粉末衍射(XRD)、振动磁强计(VSM)、N_2吸附/脱附等手段对该多孔材料进行了表征.同时考察了Fe_3O_4/C磁性多孔材料的吸附性能,研究表明该多孔材料对品红表现出了良好的吸附效果.  相似文献   

7.
通过水热合成法和溶胶凝胶法制备Fe_3O_4@NiSiO_3磁性纳米粒子,该纳米粒子微球具有均一的形貌、良好的磁性和分散性。将合成的Fe_3O_4@NiSiO_3磁性纳米粒子作为磁性固相萃取(MSPE)介质,并结合高效液相色谱(HPLC)建立了水样中痕量微囊藻毒素MC-LR的分析方法。在优化实验条件下,方法在0.25~146.5μg/L浓度范围内呈良好的线性关系,相关系数(r)为0.999 1,检出限为0.011μg/L。将该方法用于纯水中微囊藻毒素的分析,回收率为81.0%,对实际水样的回收率为66.7%~72.0%。表明Fe_3O_4@NiSiO_3磁性纳米粒子具有良好的选择性富集能力,可用于水中痕量微囊藻毒素的萃取。  相似文献   

8.
通过多步反应制备了一种p H响应性磁性介孔二氧化硅纳米复合粒子Fe_3O_4/m Si O_2/聚(丙烯酸异丁酯-co-丙烯酸)(Fe_3O_4/m Si O_2/P(IBA-co-AA)).纳米复合粒子由包覆介孔二氧化硅的Fe_3O_4核和聚(丙烯酸异丁酯-co-丙烯酸)的p H响应性外壳组成.利用红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)对其结构、物相和性能进行了表征。以抗癌药物阿霉素(DOX)为模型药物,研究了Fe_3O_4/m Si O_2/P(IBA-co-AA)磁性纳米复合粒子在模拟人体环境中的控释行为.选择SMCC7211肝癌细胞为模型细胞,用MTT法研究载药粒子的细胞毒性,并评价载药纳米粒子在细胞中的抗癌效果.结果表明:Fe_3O_4/m Si O_2/P(IBA-co-AA)可作为包载阿霉素的一种新型纳米材料,载药颗粒具有良好的p H响应性,可以有效释放DOX药物来抑制癌细胞的增殖.  相似文献   

9.
利用液相沉淀法可控合成了均匀的棒状CuFe_4O_x催化剂。通过原位X射线粉末衍射(XRD)、高分辨透射电子显微镜(TEM)及程序升温还原(TPR)等手段表征其晶相结构、形貌和还原性能。通过还原棒状CuFe_4O_x获得Cu~0/Fe_3O_4纳米棒,原位X射线光电子能谱(XPS)用于确定Cu~0/Fe_3O_4表面的相组成。通过液相沉淀法制备棒状CuFe_4O_x,在120℃保持3 h后加入Na2CO3溶液至pH等于9时所得棒状形貌最为规整。以异戊醇脱氢反应作为探针反应,比较了Cu~0/Fe_3O_4纳米棒和Cu~0/Fe_3O_4纳米颗粒的催化反应性能,发现Cu~0/Fe_3O_4纳米棒比Cu~0/Fe_3O_4纳米粒子具有更好的活性和稳定性,表明棒状Fe_3O_4担载的Cu纳米粒子具有更好的结构稳定性。  相似文献   

10.
归纳了从钛铁矿中分离铁和二氧化钛的方法,包括亚熔盐法、预氧化法、还原锈蚀法;其次,初步总结了目前国内外制备Fe_3O_4磁性纳米颗粒和TiO_2纳米粒子的方法。最后,对Fe_3O_4/TiO_2复合材料的制备方法包括溶胶-凝胶法、微乳液法、均匀沉淀法作了梳理。Fe_3O_4/TiO_2复合纳米材料很好地解决了单独使用TiO_2作为废水处理催化剂,在实际应用过程中易随水流失,难以回收利用的问题,具有一定的实用性。  相似文献   

11.
归纳了从钛铁矿中分离铁和二氧化钛的方法,包括亚熔盐法、预氧化法、还原锈蚀法;其次,初步总结了目前国内外制备Fe_3O_4磁性纳米颗粒和TiO_2纳米粒子的方法。最后,对Fe_3O_4/TiO_2复合材料的制备方法包括溶胶-凝胶法、微乳液法、均匀沉淀法作了梳理。Fe_3O_4/TiO_2复合纳米材料很好地解决了单独使用TiO_2作为废水处理催化剂,在实际应用过程中易随水流失,难以回收利用的问题,具有一定的实用性。  相似文献   

12.
以氯化亚铁为原料,采用空气氧化法制备适合静电显影墨粉用的磁性纳米Fe_3O_4微粒,分别用三乙醇胺、月桂酸钠、有机硅化合物对产品进行表面改性处理.利用X射线衍射仪、透射电镜、红外光谱仪、EDS能谱仪、热重分析仪、振动样品磁强计分析了改性后纳米Fe_3O_4磁性粒子的形貌、表面相成分及磁性能.结果表明,三种物质都可以包覆在纳米Fe_3O_4磁性粒子表面;包覆后粒子的平均粒径没有明显变化,对纳米Fe_3O_4的磁性能影响不大;同时由于表面包覆层的空间位阻和静电作用,限制了纳米Fe_3O_4磁性粒子的团聚,提高了磁性粒子的分散性和稳定性.  相似文献   

13.
唐蒙  刘刚  邢祎琳  张爱波 《应用化学》2017,34(2):225-232
采用溶剂热法将磁性Fe_3O_4粒子附着在聚乙烯亚胺(PEI)修饰的多壁碳纳米管(MWNTs)表面,制备了兼具介电损耗和磁损耗的复合吸波微粒Fe_3O_4/MWNTs。利用X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)、热重分析仪(TGA)、透射电子显微镜(TEM)及矢量网络分析仪等分析了Fe_3O_4/MWNTs复合粒子的结构、形貌和吸波性能。TEM结果表明,由于PEI的修饰作用,Fe_3O_4/MWNTs复合粒子具有良好的分散性。XRD结果显示,附着的Fe_3O_4粒子具有完整的晶型结构。吸波性能结果表明,PEI修饰的Fe_3O_4/MWNTs复合微粒拥有非常优异的吸波性能,随着厚度的增加,复合微粒的吸收峰向低频处移动。在厚度为3.2 mm,频率为6.16 GHz时,出现了最大反射损耗-42.9 d B,反射损耗大于-10 d B的频段为1.42 GHz(5.40~6.82 GHz)。  相似文献   

14.
周春于  杨俊玲  于振东 《化学通报》2018,81(10):914-918,923
以废弃的虾壳为原料制备壳聚糖,以壳聚糖为壳、磁性Fe_3O_4为核、液体石蜡为分散剂、T-80为乳化剂、戊二醛为交联剂制备了纳米Fe_3O_4@壳聚糖材料。利用扫描电镜、热重分析仪、红外光谱仪、X射线衍射仪对其进行了表征。结果显示,纳米Fe_3O_4@壳聚糖材料为表面光滑的球形结构,直径约75.82nm,壳聚糖和Fe_3O_4的质量比为2∶1。吸附动力学实验研究表明,纳米Fe_3O_4@壳聚糖材料对Cu~(2+)吸附符合准二级动力学,以化学吸附为主,平衡吸附容量为17.32mg/g。吸附等温线实验研究表明,吸附符合Freundlic模型,纳米Fe_3O_4@壳聚糖材料与Cu~(2+)之间的交互作用强烈,最大吸附容量为213.68mg/g。  相似文献   

15.
采用表面离子印迹技术,以磁性Fe_3O_4@SiO_2微球为载体、Pb(Ⅱ)为模板、甲基丙烯酸和水杨醛肟为功能单体、二甲基丙烯酸乙二醇酯为交联剂,合成了磁性铅(Ⅱ)离子表而印迹聚合物,并通过对比证实了印迹聚合物对Pb(Ⅱ)的良好吸附性能和选择识别能力。当温度为277 K~286 K时,在最佳吸附pH 6.0下,可在4 h达到吸附平衡,最大吸附量为81.83 mg/g;当Pb(Ⅱ)浓度为300 mg·L~(-1),2倍的Cu(Ⅱ)、Zn(Ⅱ)或Cd(Ⅱ)与之共存时,印迹聚合物对Pb(Ⅱ)仍有较高的选择性,相对选择性系数分别为2.79、4.55和4.70。将印迹聚合物重复利用5次后,吸附量的损失约为8%。  相似文献   

16.
采用改进的Hummers法制备了氧化石墨烯,用水热法首次制备了Fe_3O_4/GO/PPy(聚吡咯)三元复合粒子用于处理含2-硝基-1,3-苯二酚(NRC)的废水,研究了其对水中NRC的吸附性能。采用紫外-可见吸收光谱(UV-Vis)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计及ζ电位等对所制备复合粒子的结构进行了表征;研究了溶液pH值、吸附剂用量、NRC的初始浓度、吸附时间和温度对吸附NRC的吸附性能的影响,并对吸附过程进行了吸附动力学模拟。结果表明:制备的Fe_3O_4/GO/PPy复合材料为层状分散结构,PPy及Fe_3O_4颗粒无规则地镶嵌在石墨烯片层之间。Fe_3O_4颗粒为多面体晶体结构,尺寸为100~300 nm。Fe_3O_4/GO/PPy具有超顺磁性,40 s可以磁分离,NRC移除率达91.6%;在NRC浓度为200 mg·L~(-1)、pH=5±0.05、温度T=318 K、吸附剂用量10 mg·L~(-1)和吸附时间6 h的条件下Fe_3O_4/GO/PPy对NRC的吸附量最大,达到163.3mg·g~(-1)。NRC吸附动力学符合二级动力学模型,吸附等温线符合Langmuir模型。循环使用5次后,NRC的移除率由最初的91.6%下降至77.6%,说明Fe_3O_4/GO/Ppy磁性复合物的结构具有较好的稳定性,且可以再重复利用。  相似文献   

17.
《离子交换与吸附》2021,37(2):164-174
以氧化石墨烯(GO)和聚乙烯亚胺(PEI)为反应物,采用共混法制备PEI/GO,然后将Fe_3O_4纳米颗粒分散沉积到PEI/GO表面,得到了复合材料Fe_3O_4/PEI/GO。利用傅里叶红外光谱(FT-IR)、透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等方法对该材料进行表征,并研究了其对Cu~(2+)的吸附性能。结果表明,PEI与GO的羧基反应生成了酰胺键,Fe_3O_4成功沉积在GO表面,GO层状结构的规整性被破坏。Freundlich等温吸附模型和准二级动力学模型能更好地拟合Cu~(2+)在Fe_3O_4/PEI/GO表面的吸附过程,说明该吸附主要受化学作用控制,可能是Fe_3O_4/PEI/GO表面的胺基、羧基、羟基等活性基团与Cu~(2+)发生了离子交换或络合反应所致。  相似文献   

18.
以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m~2·g~(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

19.
采用共沉淀法,合成了由两亲性嵌段共聚物聚(苯乙烯)-b-聚(甲基丙烯酸聚乙二醇酯)(PSt-bPMAPEG)修饰的Fe_3O_4-聚合物复合纳米粒子。以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(AAPTS)为功能化试剂,制备了氨基功能化介孔材料Fe_3O_4/SiO_2-NH2。采用X射线衍射(XRD),傅里叶变换红外光谱(FT-IR),透射电子显微镜(TEM),N_2吸附/脱附等手段对Fe_3O_4/SiO_2-NH2进行了表征。结果表明,成功制备粒径约为50nm,孔径分别为3.3nm和42.9nm的Fe_3O_4/SiO_2介孔粒子。将磁性材料对水中酸性品红进行吸附性能研究,探讨了Fe_3O_4/SiO_2-NH2对染料酸性品红的吸附效率。结果表明:Fe_3O_4/SiO_2-NH2的用量为10mg,吸附时间为3.5min,溶液起始浓度为0.25mmol·L-1时吸附率达93.32%。  相似文献   

20.
以氧化石墨烯和Fe~(3+)为原料,采用溶剂热法合成了磁性石墨烯(Fe_3O_4@rGO)纳米复合材料,并以扫描电镜和X-射线衍射谱对复合材料的形貌和结构进行了表征。将Fe_3O_4@rGO组装到磁性玻碳电极(mGCE)表面,得到了Fe_3O_4@rGO/mGCE。研究了该修饰电极的电化学性能,并利用循环伏安法和计时电流法研究了此修饰电极对肼的电催化氧化性能。Fe_3O_4@rGO纳米粒子具有较高的导电效率,可加快电极表面电荷传递速度,同时该纳米粒子对肼的电催化氧化作用显著的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号