共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
智能纳米通道由于独特的纳米结构,导致对离子的通过具有选择性、整流性和门控性,从而在能量转换领域具有重要的应用前景。本文根据能量转换原理的不同,将纳米通道在能量转换中的应用分为:模仿电鳗鱼将化学能转换为电能,模仿绿叶将光能转换为化学能,模仿菌紫质将光能转换为电能,模仿水力发电机将流体机械能转换为电能。其中,模仿电鳗鱼系统由于广泛的能量来源、高的能量转换效率以及输出的能量形式为电能,应用前景最为广阔。能量转换的性能受纳米通道自身的几何结构以及内表面电荷密度的影响。除此之外,还受外界条件的影响,比如电解质溶液类型和浓度,浓差和气压差的大小以及pH值等。 相似文献
3.
传统癌症治疗方法(如化疗、放疗和手术切除等)存在对正常组织的严重毒副作用和治疗效果差等缺点,从而阻碍了其在临床治疗中的进一步应用.随着纳米技术和纳米医学的快速发展,能量转换生物材料介导的治疗方式,由于其具有非侵入性、较强的组织穿透能力和对治疗剂量的精准调控等优势而受到广泛关注和研究.本文总结了近年来本研究团队在"能量转换生物材料"(包括光-热转换、光-化学能转换、超声-化学能、超声-热能转换、磁-热能转换和化学能-化学能转换)的设计、制备及其在癌症治疗中的应用,并讨论了"能量转换纳米医学和生物材料"在未来临床转化中的应用前景和面临的挑战. 相似文献
4.
5.
碳纳米管(CNTs)因具有独特的物理化学及电化学性质,如较大的比表面积、较强的电子转移能力和良好的吸附性能等而引起人们的广泛关注.碳纳米管可以通过物理吸附、静电或疏水作用等非共价结合方式或共价连接方式固定生物大分子(如蛋白质、DNA、抗体等),有效地促进生物大分子与电极间直接、快速的电子转移,可应用于多种电化学生物传感器中.碳纳米管本身在近红外光区具有独特的荧光和拉曼光谱,可以利用多种光谱手段对多种生物分子实现定量检测,因此近年来碳纳米管在光化学生物传感器中的应用也逐渐受到了研究者的重视.本文对碳纳米管在电化学和光化学生物传感器中的应用进行了简要综述和展望. 相似文献
6.
高效的电化学能量存储与转换功能材料及其器件近年来受到了人们的广泛关注。层状双金属氢氧化物/石墨烯(LDH/G)复合物就是一类重要的能源材料。它们兼具LDH和石墨烯的优异的物理、化学性能,同时克服了LDH导电性差和石墨烯片易于团聚的问题;在超级电容器和电化学催化分解水等方面具有广泛应用。本文综述了LDH与化学修饰石墨烯(氧化石墨烯,还原氧化石墨烯及其衍生物)的有效复合的方法及其在电化学能量存储与转换领域中的应用,特别是关于基于该类材料的超级电容器及电化学析氧反应催化的研究;对LDH/G复合材料研究领域中的挑战和未来发展方向做了展望。 相似文献
7.
自2011年张涛院士等首次提出单原子催化剂(SACs)概念以来,单原子催化迅速成为研究热点.SACs具有最大的原子利用率、独特的结构和性能,因而在催化领域具有很好的应用前景,备受关注.本文首先介绍了基于自下而上和自上而下合成策略的各种SACs制备方法以及近年来相应的研究进展,其中包括浸渍法、共沉淀法、原子层沉积法等较为传统的催化剂合成策略,以及缺陷设计法、空间限域法和火焰喷雾热解法等新方法,并详述了这些制备方法在实际应用中的优缺点.对于电催化原理分析方面,较详细地介绍了各电化学能源转换领域相关催化反应的理论计算结果以及各催化反应相应的原理与途径.然后重点介绍了含贵金属(Pt, Pd, Ir等)和非贵金属(Fe,Cu,Co等)的SACs在析氧反应、析氢反应、氧还原反应、CO2还原反应和氮还原反应中的电催化应用.最后讨论了SACs的应用前景和未来面临的挑战:(1)深入进行SACs制备方法的研究,提高合成策略的实际应用可行性以推进催化剂的工业化进程;(2)提高SACs中金属负载量,以提升其催化性能;(3)结合理论计算,增强对SACs配位环境、电子结构的精确控制,进而优化催化剂的催化性能;(4... 相似文献
8.
纳米纤维聚苯胺在电化学电容器中的应用 总被引:15,自引:0,他引:15
采用脉冲电流方法(PGM)合成了具有纳米纤维结构的导电聚苯胺(PANI).扫描电子显微镜对膜层观察表明, PANI膜是由直径约为100 nm的掺杂态聚苯胺纤维交织而成.以纳米纤维状聚苯胺组成电化学电容器,研究了其电化学电容性能,并与恒电流方法(GM) 制备的颗粒状PANI电容器性能进行了比较.结果表明,在相同的沉积电量下,PGM制备的纳米纤维状PANI电化学电容器比颗粒状PANI电化学电容器具有更大的电容容量,其电化学电容器的比电容可高达699 F•g-1,能量密度为54.6 Wh•kg-1.并且该电化学电容器具有良好的充放电性能和循环寿命. 相似文献
9.
10.
综述了新型过渡金属碳化物和/或氮化物(MXenes)二维纳米材料的合成及其在电化学能源存储与转换中应用的研究进展,这些应用可以分为如下三类:二次电池、超级电容器以及电化学催化。 由于具有二维结构、金属导电性、亲水性表面以及其它优点,MXene二维纳米材料在这些应用领域展示了良好的性能,而且还可以通过嵌入、复合、掺杂、组装等方法来进一步提高其电化学性能。 本文为新型MXenes以及相关材料的开发、合成和应用提供了思路,这种新型MXenes 材料可以用于能量存储与转换、电子和催化等领域。 相似文献
11.
通过共价键作用和原位还原法制备了金纳米粒子/壳聚糖-石墨烯纳米复合材料(AuNPs/Chit-GP). 利用FT-IR, UV-vis, TEM以及XRD对所合成的纳米复合物的结构和形貌进行了表征. AuNPs/Chit-GP呈现明显的正电荷, 因此可通过静电相互作用固载葡萄糖氧化酶(GOD), 并构建GOD/AuNPs/Chit-GP/GC修饰电极. 该修饰电极不仅可成功地实现GOD与电极间的直接电子转移, 还对葡萄糖表现出良好的催化性能. 实验结果表明, 其催化的线性范围为2.1~5.7 μmol/L, 检出限为0.7 μmol/L, 灵敏度为79.71 mA·cm-2·mM-1. 这种集金属纳米粒子、生物相容性高分子以及石墨烯为一体的纳米复合物的构筑为无媒介体的电化学生物传感器的研究提供了一个良好的平台. 相似文献
12.
电化学方法制备稀土材料及稀土在电化学中的应用 总被引:10,自引:1,他引:10
电化学方法制备稀土材料及稀土在电化学中的应用①杨绮琴童叶翔(中山大学化学与化学工程学院广州510275)稀土元素内层4f电子的数目从0向14个逐个填满,造成它们之间在光学、磁学、电学性能上出现明显差异,衍生出种类繁多的高新材料.我国的稀土资源非常丰... 相似文献
13.
将石墨烯与其他纳米材料复合,是一种拓展或增强其应用的有效方法。借助不同组分间的协同作用,可以改善石墨烯的电学、化学和电化学性质,拓展和增强石墨烯的电化学效应,为固定氧化还原酶,实现直接电化学提供新型、高效的平台,应用于第三代电化学生物传感器的设计和制备,对葡萄糖、胆固醇、血红蛋白、DNA、H2O2、O2、小生物分子等的检测显示出了优异的灵敏度和选择性。本文综述了基于石墨烯构筑的纳米复合材料在电化学生物传感器中的应用研究,包括石墨烯与贵金属、金属氧化物/半导体纳米粒子、高分子、染料分子、离子液体、生物分子等的纳米复合材料,并对石墨烯材料在电化学领域的发展方向和应用前景进行了展望。 相似文献
14.
15.
The implementation of clean energy techniques, including clean hydrogen generation, use of solar-driven photovoltaic hybrid systems, photochemical heat generation as well as thermoelectric conversion, is crucial for the sustainable development of our society. Among these promising techniques, electrocatalysis has received significant attention for its ability to facilitate clean energy conversion because it promotes a higher rate of reaction and efficiency for the associated chemical transformations. Noble-metal-based electrocatalysts typically show high activity for electrochemical conversion processes. However, their scarcity and high cost limit their applications in electrocatalytic devices. To overcome this limitation, binary catalysts prepared by alloying with transition metals can be used. However, optimization of the activity of the binary catalysts is considerably limited because of the presence of the miscibility gap in the phase diagram of binary alloys. The activity of binary electrocatalysts can be attributed to the adsorption energy of molecules and intermediates on the surface. High-entropy alloys (HEAs), which consist of diverse elements in a single NP, typically exhibit better physical and/or chemical properties than their single-element counterparts, because of their tunable composition and inherent surface complexity. Further, HEAs can improve the performance of binary electrocatalysts because they exhibit a near-continuous distribution of adsorption energy. Recently, HEAs have gained considerable attention for their application in electrocatalytic reactions. This review summarizes recent research advances in HEA nanostructures and their application in the field of electrocatalysis. First, we introduce the concept, structure, and four core effects of HEAs. We believe that this part will provide the basic information about HEAs. Next, we discuss the reported top-down and bottom-up synthesis strategies, emphasizing on the carbothermal shock method, nanodroplet-mediated electrodeposition, fast moving bed pyrolysis, polyol process, and dealloying. Other methods such as combinatorial co-sputtering, ultrashort-pulsed laser ablation, ultrasonication-assisted wet chemistry, and scanning-probe block copolymer lithography are also highlighted. Among these methods, wet chemistry has been reported to be effective for the formation of nano-scale HEAs because it facilitates the concurrent reduction of all metal precursors to form solid-solution alloys. Next, we present the theoretical investigation of HEA nanocatalysts, including their thermodynamics, kinetic stability, and adsorption energy tuning for optimizing their catalytic activity and selectivity. To elucidate the structure–property relationship in HEAs, we summarize the research progress related to electrocatalytic reactions promoted by HEA nanocatalysts, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, methanol oxidation reaction, and CO2 reduction reaction. Finally, we discuss the challenges and various strategies toward the development of HEAs. 相似文献
16.
聚合物在纳米微粒制备中的应用 总被引:16,自引:0,他引:16
概述了近年来聚合物在纳米微粒制备中的应用,分析了应用极性高分子作为纳米微粒分散介质的可行性,讨论了用络合转换方法制备纳米微粒的普适性。 相似文献
17.
18.
电化学转换反应作为一种新的电极反应机制,近年来受到相当多的关注. 转换反应不仅能够利用金属化合物的多价态氧化还原,大幅度提高电化学容量利用率,而且对于主体晶格的结构、嵌脱阳离子的尺寸并无特殊要求,可以应用于众多不同种类的金属化合物,针对不同的金属离子设计高容量正负极活性材料. 因此,基于转换反应构建高容量电极材料正成为二次电池发展的一个新方向. 本文简要分析了电化学转换反应的基本原理和实现条件,并结合作者课题组近年来的研究工作探讨了这类反应在锂离子及钠离子电池中的潜在应用. 相似文献
19.
扫描电化学显微镜是一种在检测样品表面物理形貌的同时能提供丰富的电化学信息的扫描探针技术,由于超微电极的引入,它可以高时空分辨率地探究各类样品的物理形貌和电化学性能之间的构效关系. 随着现代纳米科技的不断发展,扫描探针的尺寸也逐渐从亚微米发展到纳米级别. 与此同时,高效优选各类氧反应和氢反应电催化材料,明晰其电化学反应过程和性能是二十一世纪绿色新能源转换存储系统(如可再生燃料电池、金属空气电池等)的重要研究方向. 本文首先概括了可应用于扫描电化学显微镜的纳米级扫描探针的制备及发展,之后着重介绍了近四年纳米尺度扫描电化学显微镜在电催化氧反应和氢反应研究中的一些最新研究进展. 最后以点窥面,对未来纳米尺度扫描电化学显微镜的未来发展趋势作了展望. 相似文献
20.