首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
基于稀土元素特殊的电子结构、独特的光电磁性质及相对大的原子序数,近年来,多领域的科学家们将研究热点聚焦到稀土基纳米造影剂的理性合成及生物医学成像的相关研究上.长久以来,稀土元素的4f电子赋予其构建荧光探针的本能,稀土掺杂的上转换纳米材料已被广泛应用于荧光成像.因存在大量未配对的4f电子,钆离子修饰的纳米探针及基于钆的纳米材料常用于T_1加权磁共振成像.由于稀土元素相比碘元素具有更高的原子序数和更强的X射线衰减系数,稀土基纳米材料可用于X射线及X射线断层摄影术(CT)成像.本文将针对近年来稀土基多模态纳米造影剂的开发与应用进行介绍,综述其在生物医学领域的研究进展.  相似文献   

2.
磁共振成像(MRI)是一种强大的非侵入式生物医学诊断技术. 临床上, MRI需要借助造影剂来提高成像质量, 从而提高诊断的准确性. 由于具有优越的信号放大能力和生物相容性, 自组装多肽探针可负载特定的MRI分子, 通过酶促自组装过程实现肿瘤靶向和特异性富集, 增强肿瘤病灶区MRI信号, 从而进一步提高MRI的准确性和灵敏度. 本综述总结了近年来多肽自组装探针在不同MRI模式( 1H MRI, 19F MRI和双自旋核MRI)下的最新进展, 并展望了这类新型探针在MRI领域的应用前景.  相似文献   

3.
在生物医学领域,对纳米尺寸级别的微小生物目标进行精确定位研究具有非常重要的意义,而光学显微成像技术为此提供了强有力的工具。 光学显微成像技术受到光学衍射极限的限制,难以分辨尺寸在衍射极限(<200 nm)以下的生物结构,无法直接获取微小生物结构信息,阻碍了生物医学的进一步发展。 近年来,随着纳米分辨显微成像技术的出现,新型荧光探针的开发、成像系统与设备的不断发展及成像算法不断完善地深入结合,促进了光学衍射极限以下尺寸微观目标的研究。 基于单分子定位的超分辨荧光显微成像(SMLM)包括光激活定位成像(PALM)与随机光学重构超分辨成像(STORM),将有机荧光探针与超分辨光学显微成像技术紧密结合在一起,荧光探针的光物理性质直接决定着超分辨成像结果的好坏。 因此,设计不同性能的荧光探针可以实现超精细结构的不同超分辨成像,为研究其生物学功能提供了有力的工具。 本文着重围绕基于SMLM的原理、有机荧光探针的设计要求、用于SMLM的荧光探针种类及其生物应用等方面进行总结综述,指出了单分子定位成像上存在的不足,并对其发展方向进行了展望,希望为对超分辨成像研究感兴趣或初涉该领域的研究者提供成像理论与探针设计方面的帮助。  相似文献   

4.
将巯基修饰的核酸适配子(aptmer)偶联到金纳米粒子(AuNPs)表面,制备出朊蛋白特异性的Apt-AuNPs纳米光学探针,并成功应用到细胞表面朊蛋白的光散射成像和电子透射显微成像分析.通过对Apt-AuNPs探针进入细胞的途径及其在细胞内命运的进一步研究表明,窖蛋白介导的内吞作用可能是其进入细胞的一个重要途径.Apt-AuNPs纳米探针制备简单、成本低廉,可能被广泛应用于生物医学成像领域.  相似文献   

5.
内源性信号小分子在生命活动过程中起着重要的作用,其浓度的变化和分布的异常与多种生理病理状态相关.设计可实时检测其在体内动态变化的成像体系对疾病诊断、病因探讨及细胞信号转导机制的研究至关重要.传统的检测方式多采用单一通道成像,干扰因素较多难以精确定量.近年来,比率成像纳米探针借助其独特的优势被广泛应用于生物医学领域.本文简要综述了响应于氢离子、活性氧/氮物种(ROS/RNS)和气体信号分子的比率成像纳米探针的设计原理及生物学应用.  相似文献   

6.
对疾病的传统诊断与治疗相对独立,虽然能基本满足临床需要,但这种医疗模式会因为治疗的滞后性而影响某些疾病的治愈效果.诊疗一体化的出现有望显著消除这一弊端.随着纳米技术的快速发展,诊疗一体化纳米探针的设计制备将加速这一新型医疗模式的应用.磁共振成像(MRI)因其无创性及高软组织分辨率而成为临床中常用的检测与监测技术,特别是对比剂的引入可进一步增强其灵敏度,对微小的病灶具有更高的诊断率.基于MRI诊疗一体化纳米探针备受关注.以不同纳米载体(脂质体、介孔二氧化硅、二氧化锰、氧化石墨烯、二硫化钼等)为基础构建的MRI诊疗一体化纳米探针,集早期诊断,药物输送和靶向治疗于一体.本文将就目前常用的磁共振成像对比剂以及国内外先进的诊疗一体化纳米探针的设计原理和应用前景进行介绍,同时也对其在生物医学领域的广阔开发潜力作了探讨.  相似文献   

7.
基于磁共振与荧光成像的双模态成像技术不仅克服了传统单一分子影像技术在灵敏度、特异度、分辨率等方面的固有缺陷,更是拓宽了分子影像技术在诊断及治疗监控等领域的研究范围及应用前景。本文将对磁共振/荧光双模态分子探针的应用情况和研究进展等进行综述。  相似文献   

8.
基于单分子定位的随机光学重构超分辨成像作为一种先进的光学成像方法,可用于尺寸小于光学衍射极限的生物结构的超清晰成像,为在单分子层面研究疾病的发病机制及寻找精准的治疗策略提供有力研究工具,在生物医学领域有着广泛的应用前景.随机光学重构超分辨成像技术依赖于标记探针的光物理性质,探针需要在大量缓冲试剂及含巯基试剂存在下才能产生稳定光致闪烁进行超分辨成像,获得理想的超分辨成像结果,但是大量缓冲试剂与巯基试剂对活细胞伤害较大,使得其在活细胞的超分辨成像应用上存在困难,而限制了其在生物医学成像领域的进一步应用,因此,需要开发可用于活细胞的单分子定位超分辨成像的新型光学探针.本工作提出了一种新的可用于单分子定位超分辨成像的五甲川菁染料探针,不需要外加成像缓冲液及巯基试剂就可以产生光致闪烁变化.基于此,开发了一种分子内自发开、关环反应的新型五甲川菁染料探针,具有活细胞膜通透性.探针不需要使用缓冲液体系及对细胞有害的含巯基试剂,在低功率单束激光直接照射下产生光致闪烁,探针对活细胞没有产生明显毒性,适合活细胞的超分辨成像.进入活细胞后探针选择性定位于细胞线粒体上,在激光照射下产生光致闪烁,电子倍增电荷耦合器相机(EMCCD)在采样频率60 Hz下收集不同条件下的光致闪烁图像,设置不同参数进行结果分析,使用ImageJ进行图像预处理后再使用Falcon算法重构获得活细胞线粒体的超分辨成像图像,相比宽场成像,成像分辨率明显提高,为生物医学光学成像提供新的研究手段.  相似文献   

9.
随着生物医学的发展,对生物成像技术和成像分辨率的要求越来越高,纳米材料和技术被越来越多地应用到生物医学领域.各向异性的金纳米棒由于具有较高的电子密度、较大的吸收截面、特殊的表面等离子共振光学特性、优良的生物相容性和化学稳定性而被广泛应用于生物成像领域.复杂的活细胞组织内纳米级目标的位置和动态的空间构型对于我们理解很多生物物理学过程的细节问题至关重要.本文结合本课题组在该领域的研究经验,并从金纳米棒局部等离子共振特性和偏光特性出发,综述了金纳米棒作为方向探针的3D跟踪定位成像技术与手段.包括暗场成像技术、微分干涉成像、光热成像、共聚焦显微镜成像等生物成像技术和脱焦成像、全内反成像和双通道等生物成像手段.同时阐述了金纳米棒作为方向探针在生物成像领域中的应用进展.  相似文献   

10.
金纳米棒因其独特的光学活性(纵向和横向两个等离子体共振吸收峰,可调范围从可见光区到近红外区)、长径比可调,表面易于修饰,生物相容性良好而使得其在纳米生物学和生物医学等领域具有广泛的应用前景。金纳米棒的合成及表面修饰直接决定着其物理化学性质,进而影响其生物相容性及其在生物医学中的应用。本文综述了金纳米棒的可控制备方法(包括模板法、电化学法、光化学法和晶种法)、表面可控修饰方法及其在纳米生物学和生物医学中的应用新进展,重点总结了金纳米棒的表面可控修饰及其在分子探针、生物传感、生物成像、药物载体、基因载体和光热疗法的最新研究进展。最后针对金纳米棒在生物应用过程中的一些瓶颈问题(如:特异性识别能力需要增强和荧光量子产率尚待提高等)提出了将手性分子或智能聚合物引入到金纳米棒表面进行可控修饰,以期增强其特异性识别能力并提高荧光量子产率,为金纳米棒的发展提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号