首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过浸渍法制备了γ-Al2O3负载镍、锰、钴等不同金属氧化物催化剂,在25℃、200000 mL/(gcat·h)的空速条件下,研究了其臭氧催化分解性能.结果表明,10%NiO/γ-Al2O3催化剂催化活性最佳,20 h内臭氧转化率高于96%.借助XRD、XPS、TEM、SEM-EDS、H2-TPR等表征手段,揭示出在...  相似文献   

2.
活性炭负载金催化分解空气中低浓度臭氧   总被引:3,自引:0,他引:3  
采用等体积浸渍法制备了以煤质活性炭为载体的负载金催化剂,并运用N2吸附-脱附法和X射线光电子能谱对样品进行了表征.考察了该催化剂催化分解低浓度臭氧的活性,并研究了载体预处理方法和催化剂后处理方法对催化剂活性的影响.在常温,相对湿度为60%,臭氧浓度为45 mg/m3,空速为60 000 h-1的条件下,1.6 g活性炭经HNO3和NaBH4处理后负载金再经H2还原后的催化剂在反应最初的16 h内臭氧去除率稳定在100%,反应100 h后对臭氧的去除率仍在97%以上.表征结果表明,NaBH4还原处理使得活性炭比表面积、孔体积及石墨碳含量增加,含氧官能团下降,从而提高了催化剂的活性.载金后,催化剂比表面积和孔体积进一步增大,但石墨碳含量下降,C-O和COO-等含氧官能团增加.经臭氧氧化后,催化剂的比表面积和孔体积减小,石墨碳含量下降,C-O,COO-和C=O等含氧官能团增加,而金的粒径和价态并未改变,表明活性炭在金催化下被臭氧氧化.  相似文献   

3.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO2进一步转化为溶解度高的N2O5,传统脱硫石膏浆液即可实现高效吸收N2O5,从而有效提高氮氧化物吸收效率.但由于N2O5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70oC下,O3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N2O5生成的总包反应(2NO+3O3=N2O5+3O2)可以看出,O3/NO摩尔比为1.5时即可实现N2O5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m3,反应温度100oC,O3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO2的浓度分别低于20 mg/m3(Fe-Mn)和50 mg/m3(Ce-Mn),臭氧残留浓度低于25 mg/m3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N2O5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NOx<50 mg/m3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn4+和Mn3+的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N2O5生成效率.  相似文献   

4.
A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO decomposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473 K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ) and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.  相似文献   

5.
负载型CuCl的NO分解性能   总被引:1,自引:1,他引:0  
朱月香  谢有畅 《分子催化》1999,13(4):265-270
制备并研究了几种负载型CuCl体系中CuCl的分散状态及其NO分解性能。结果表明,单层分散对于负载型CuCl体系的N粉解性能起着重要作用。CuCl含量在其分散阈值附近的样品具有最高的NO解解活性。  相似文献   

6.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO_2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO_2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO_2进一步转化为溶解度高的N_2O_5,传统脱硫石膏浆液即可实现高效吸收N_2O_5,从而有效提高氮氧化物吸收效率.但由于N_2O_5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70 ℃下,O_3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N_2O_5生成的总包反应(2NO+3O_3=N_2O_5+3O_2)可以看出,O_3/NO摩尔比为1.5时即可实现N_2O_5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m~3,反应温度100 ℃,O_3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO_2的浓度分别低于20 mg/m~3(Fe-Mn)和50 mg/m~3(Ce-Mn),臭氧残留浓度低于25 mg/m~3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N_2O_5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NO_x50 mg/m~3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn~(4+)和Mn~(3+)的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N_2O_5生成效率.  相似文献   

7.
钴铝水滑石焙烧产物催化上NO的直接分解   总被引:2,自引:0,他引:2  
肖轶  马骏 《催化学报》1999,20(5):495-498
研究了以钴铝水滑石焙烧产物复合钴铝氧化物为催化剂直接分解NO。当钴铝复合氧化物以还原态存在时,其脉冲催化分解活性在450℃时为100%,相同条件下CuZSM-5催化剂的活性只有45%。XRD和TPR表征表明,焙烧温度不太高的情况下,钴铝复合氧化物中已含有不少的铝酸钴尖晶石,它还原生成高分散态的金属钴,这可能是它分解NO活性高的原因。  相似文献   

8.
 采用高温固相反应法合成了层状K-Fe-Ti金属氧化物催化剂,用X射线衍射、扫描电子显微镜、透射电子显微镜和紫外-可见漫反射光谱等手段对催化剂进行了表征,并通过光催化分解水制氢反应对催化剂的活性进行了评价. 结果表明,合成原料中K+的含量和固相反应温度都会影响催化剂的晶相结构; 催化剂中八面体配位的Fe3+使其具有显著的可见光吸收特性,但增加合成原料中Fe3+的量仅增加孤立的Fe2O3物种; 在草酸的偶合作用下,正交晶相的催化剂光催化分解水的产氢速率高于四方晶相的催化剂,但后者的产氢速率稳定性高于前者.  相似文献   

9.
负载Pt活性炭纤维对NO的吸附活性   总被引:7,自引:0,他引:7  
李国希  黄启忠  侯娟 《催化学报》2003,24(2):107-110
 采用电化学方法制备了负载Pt的活性炭纤维,为研究其微孔结构、Pt的分散性以及对NO的吸附活性,分别考察了其对氮气、水和NO的吸附.电沉积Pt活性炭纤维的氮吸附等温线仍呈Langmuir型,表面积和微孔孔径基本不变;对水的初始吸附点数远远大于活性炭纤维.这表明电沉积Pt没有改变活性炭纤维的微孔结构,Pt粒高度分散在活性炭纤维的外表面.而NO的吸附量显著增加,说明存在化学吸附.  相似文献   

10.
利用密度泛函理论的B3LYP方法,6-31G(d)基组,在zigzag型的四并苯模型上对NO、O2分子在活性炭纤维(ACFs)表面的吸附行为进行研究,并探讨了ACFs催化氧化NO的主要机理路径。研究结果表明,环境气氛中的O2分子可以先吸附于ACFs表面形成两个半醌基(C-O),之后C-O和吸附态的NO(C-NO)发生氧化反应生成-NO2;游离态的O2也可以经过ACFs表面的催化作用形成活性氧原子(O*)从而直接和吸附态的NO反应生成-NO2。与NO相比,O2分子的吸附能大,在同NO的竞争吸附中占据优势,结合统计热力学分析,吸附态的NO和游离态的O2所产生的活性氧原子发生氧化反应是NO转化为NO2的主要途径。  相似文献   

11.
Cu-ZSM-5分子筛因具有高的催化脱除NO活性和对环境友好等优点而引起广泛关注。本文从NO分解反应、以NH3为还原剂选择性催化还原NO(NH3-SCR-NO)和以碳氢化合物为还原剂选择性催化还原NO(CH-SCR-NO)三个方面综述了Cu-ZSM-5分子筛催化脱除NO反应机理和催化剂改进方面的研究进展,并对该领域存在的问题和发展前景做了总结和展望。Cu-ZSM-5分子筛催化分解NO被认为是最具有吸引力的脱硝方法,其通过Cu+的氧化还原过程和N2O的生成来实现;Cu-ZSM-5分子筛上NH3-SCR-NO反应具有较高的NO脱除效率,NO首先被氧化为NO2,NO2再与NH3结合为NH4NO3,NH4NO3再进一步与NO反应生成N2;CH-SCR-NO反应是利用贫燃发动机尾气中未完全燃烧的碳氢化合物为还原剂,一般认为碳氢化合物与氮氧化物生成硝基烷或亚硝基烷,再经异氰酸酯或氰化物生成终产物N2。Cu-ZSM-5分子筛存在水热稳定性差和易发生二氧化硫中毒等缺点,通过引入第二金属组分和制备整体式催化剂方法可显著改善Cu-ZSM-5分子筛的催化性能。系统了解NO脱除反应机理和活性位的作用机制可为催化剂的改进奠定理论基础,同时也有助于设计合成新型高效、环境友好的脱硝催化剂体系。  相似文献   

12.
负载银催化剂的NO催化还原性能   总被引:4,自引:0,他引:4  
负载银催化剂的NO催化还原性能罗孟飞,倪哲明,朱波,袁贤鑫(杭州大学催化研究所,310028)如何消除NOx对环境的污染是当前人们所关心的课题之一,其中选择性催化还原是消除NOx的常用方法[1],这类催化剂研究最多的是金属离子交换的ZSM-5分子筛,...  相似文献   

13.
活性炭负载磷钨酸催化合成环己酮缩乙二醇   总被引:8,自引:0,他引:8  
张敏 《化学研究》2001,12(3):43-45
研究了活性炭负载磷钨酸催化合成环己酮缩乙二醇的反应 ,考察了催化剂负载量、反应时间、酮醇物质的量比、反应温度等因素对缩酮反应的影响 .结果表明 ,活性炭负载磷钨酸是合成缩酮的良好催化剂 ,在优化条件下 ,缩酮产率达 94.8% ,催化剂可重复使用  相似文献   

14.
CuO/活性炭和Fe2O3/活性炭催化还原NO   总被引:4,自引:0,他引:4  
高志明  赵震 《应用化学》1996,13(4):77-79
CuO/活性炭和Fe_2O_3/活性炭催化还原NO高志明,赵震,杨向光,吴越(中国科学院长春应用化学研究所长春130022)关键词活性炭,还原,NO,氧化铜,氧化铁目前,对固定源的NO处理是采用V2O5/TiO2作催化剂,NH3作还原剂的选择催化还原方...  相似文献   

15.
通过活性炭(AC)负载壳聚糖(CS)的方法,制备了负载型的"壳聚糖/活性炭"催化剂(CS/AC)。利用FT-IR、XRD、TG-DTG、SEM、BET、元素分析等方法对催化剂进行表征,并系统研究了该催化剂在Knoevenagel缩合反应中的催化性能。结果表明,催化剂具有较好的活性,在室温无溶剂条件下,可以催化一系列芳香醛化合物与活泼亚甲基化合物进行缩合反应,产率均在80%以上;且反应体系放大100倍时,仍然保持较高的催化效率;此外,该催化剂具有较好稳定性,重复使用8次后,仍然保持较高的催化活性。  相似文献   

16.
以活性炭负载镍为催化剂,对二苯并呋喃催化加氢工艺进行了研究,通过GC/MS分析加氢产品的组成,对加氢组份含量变化趋势进行分析,并提出了加氢反应路线。同时对二苯并呋喃加氢制备2-环己基环己醇的反应进行了研究,考察反应温度、反应压力和反应时间对产品收率的影响。实验结果表明:在甲苯溶剂中,反应温度150℃,反应压力0.5 MPa,反应时间为12 h,产品收率为63.3%,纯度98%(GC)。产品结构经IR和~1H-NMR表征  相似文献   

17.
采用硝酸改性活性炭后负载三聚磷二氢铝用于催化合成苯甲醛乙二醇缩醛,通过单因素实验考察醇醛摩尔比、催化剂用量及反应时间等因素对产品收率的影响,并采用正交实验获取较佳工艺条件。 结果表明,该催化反应中,当反应温度为110 ℃时,各因素对收率的影响顺序为:醇醛比>反应时间>带水剂加入量>催化剂用量。 优化反应条件为:苯甲醛0.2 mol,醇醛摩尔比2.5,反应时间75 min,催化剂加入量4%(占反应物总质量),带水剂加入量25 mL,苯甲醛乙二醇缩醛收率86.5%,催化剂经5次重复使用后收率仍大于86.0%。  相似文献   

18.
以活性炭负载单质碘为催化剂,合成了7种季戊四醇单缩醛.以正戊醛与季戊四醇的缩合为模型反应进行优化,其优化反应条件为:催化剂负载量为14.3%,催化剂用量为0.5g,季戊四醇14.7mmol,正戊醛17 mmol,以25mL DMF为溶剂,反应4小时,单缩醛的产率达67.4%.产物经过元素分析、IR和1HNMR表征.  相似文献   

19.
活性炭负载硅钨酸催化合成乙酸正丁酯   总被引:8,自引:0,他引:8  
以活性炭负载硅钨酸为催化剂,乙酸和正丁醇为原料合成乙酸正丁酯.优化的反应条件如下:在冰乙酸0.253mol、正丁醇0.22mol、催化剂用量为反应物总量的1.5%(质量分数)、反应温度115℃,反应时间为90min的条件下,酯化率可达97.8%.产品纯度>98%,并且催化剂可以多次使用活性没有明显下降.  相似文献   

20.
活性炭负载磷钨酸催化剂的表征及其催化性能   总被引:5,自引:0,他引:5       下载免费PDF全文
刘晓娣  刘士荣 《分子催化》2007,21(6):503-509
研究了活性炭负载磷钨酸催化剂的表征及在丁基多苷合成中的催化性能.活性炭负载磷钨酸催化剂采用浸渍法制备,并用FT-IR光谱、XRD光谱、SEM等手段进行了表征.结果表明,磷钨酸负载到活性炭后保持了原有的Keggin结构,它在载体上的吸附过程可以分为单分子吸附、多分子吸附和体相堆积三个阶段.在丁基多苷合成反应中,催化剂负载量、磷钨酸溶脱量、葡萄糖转化率之间有较复杂的关系.杂多酸溶脱量随负载量增大而增大,转化率与杂多酸溶脱量之间没有直接联系.催化剂负载量在5%到60%之间变化时,控制催化活性的主要因素分别是催化剂酸量、比表面积、游离的杂多酸量.最佳负载量为20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号