首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe3O4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe3O4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.  相似文献   

2.
We report on the fabrication of lysozyme microspheres (LyMs) incorporated with gold nanorods (NRs) as a distinctive approach for the encapsulation and release of an anticancer drug, 5-Fluorouracil (5-FU). LyMs with an average size of 4.0 ± 1.0 µm were prepared by a sonochemical method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The LyMs were examined using hydrophobic (nile red) as well as hydrophilic (trypan blue) dyes under confocal laser scanning microscopy (CLSM) to obtain information about the preferential distribution of fluorescent molecules. Notably, the fluorescent molecules were accumulated in the inner lining of LyMs as the core was occupied with air. The encapsulation efficiency of 5-FU for LyMs-NR was found to be ∼64%. The drug release from control LyMs as well as LyMs incorporated with NRs was investigated under the influence of ultrasound (US) at 200 kHz. The total release for control LyMs and LyMs incorporated with gold NRs was found to be ∼70 and 95% after 1 h, respectively. The density difference caused by NR incorporation on the shell played a key role in rupturing the LyMs-NR under US irradiation. Furthermore, 5-FU loaded LyMs-NR exhibited excellent anti-cancer activity against the THP-1 cell line (∼90% cell death) when irradiated with US of 200 kHz. The enhanced anti-cancer activity of LyMs-NR was caused by the transfer of released 5-FU molecules from bulk to the interior of the cell via temporary pores formed on the surface of cancer cells, i.e., sonoporation. Thus, LyMs-NR demonstrated here has a high potential for use as carriers in the field of drug delivery, bio-imaging and therapy.  相似文献   

3.
Poly(D,L-lactide-co-glycolide) (PLGA, 75/25) microspheres loaded with bovine serum albumin (BSA) were prepared using the W/O/W emulsification solvent evaporation technique. The cytotoxicity in vitro of PLGA microspheres was investigated and the BSA release from PLGA microspheres was also studied. Scanning electron micrographs showed that the PLGA microspheres were regular and the surface was smooth. BSA release typically began with an initial burst and then became steady. Analysis of the PLGA microspheres cytotoxicity showed that they had no cytotoxic effect and behaved very similar to the negative control of polystyrene. The hemolysis rate of the PLGA microspheres was 0.148%, suggesting it had no potential to induce hemolysis. The results show that PLGA microspheres may provide a useful controlled release protein drug system for used in pharmaceutics.  相似文献   

4.
Using high-intensity ultrasound, we have synthesized alpha-amylase microspheres. The paper presented characterization as well as catalytic experiments of the sonochemically-produced microspheres. It also provided an estimate of the efficiency of the sonochemical process in converting the native protein to microspheres. These microspheres showed a very good enzymatic activity compared with the native alpha-amylase. The enzymatic activity of the amylase microspheres was 27% of that of the native protein after a short reaction time (3 min), while over a longer reaction time (1 h) it reached 56% of the activity of the native protein.  相似文献   

5.
Hollow calcium silicate hydrate (CSH) microspheres with diameters around 1 μm were synthesized by a surfactant-assisted sonochemical route, and the products were characterized by XRD, SEM, FETEM and BET techniques. The results suggested that the ultrasound radiation, surfactant and Ca source were important factors which affected the formation of hollow microspheres. Based on the observation of products in different reaction systems, the possible mechanism for the formation of hollow CSH spheres was discussed. Furthermore, gentamicin, a typical anti-inflammatory drug, was used to investigate the drug loading and release behavior of the hollow spheres. The results indicated that CSH hollow spheres had high drug loading capacity and favorable drug release behavior, and might be used for preparation of bone grafts with drug delivery properties.  相似文献   

6.
Liquid-encapsulated lysozyme microspheres were successfully synthesized using a sonochemical method. The encapsulation of four different liquids, namely, sunflower oil, tetradecane, dodecane and perfluorohexane on the formation, stability and morphology of the lysozyme microspheres was studied. Among the four different liquids used for encapsulation, perfluorohexane-filled microspheres were found to be most stable in the dried state with a narrow size distribution. In order to explore the possibility of encapsulating biofunctional molecules (e.g., drugs) within these microspheres, liquids containing a fluorescent dye (Nile red) were encapsulated and the ultrasound-induced release of these dye-loaded liquids was studied. The fluorescence data for the liquid-filled lysozyme microspheres demonstrated the potential use of the sonochemical technique for synthesizing these “vehicles” for the encapsulation and the controlled delivery of dyes, flavours, fragrances or drugs.  相似文献   

7.
The use of microspheres as drug delivery vehicles for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The present paper describes the influence of process variables on the encapsulation and loading efficiency of 5-Fluorouracil (5-FU) in gelatin/chitosan (Gel/Cs) microspheres. The influences of preparation parameters, including the contents of the emulsifier Span-80, the cross-linking agent and 5-FU, and the stirring speed, on drug loading and encapsulation efficiency of the microspheres were investigated. The experimental results indicated that drug loading and encapsulation efficiency of microspheres increased with increasing concentration of the cross-linking agent; and then decreased when the concentration of the cross-linking agent was higher than 0.3 ml·g?1 of Gel/Cs. Drug loading and encapsulation efficiency increased with increasing concentration of Span-80; they reached the maximum value when the concentration of the emulsifier was 0.012 g·ml?1. The loading and encapsulation efficiency of the microspheres also increased with increasing stirring speed. In addition, drug loading and encapsulation efficiency increased with increasing concentration of 5-FU; however, the encapsulation efficiency decreased when the concentration of 5-FU was higher than 40 mg·ml?1.  相似文献   

8.
Polyphenols found in fruits and vegetables are of great interest due to their health benefits. Gallic acid (GA) is an antioxidant with cytotoxic effects. Microspheres are drug carrier systems, where the active substance is trapped in matrix. A controlled release profile is aimed at the target region by preserving the loss of substance and activity. In this study, GA containing microspheres were formed with sodium alginate (NaAlg) in formulations with different ratios. The arrest efficiencies ranged between 11.26 and 72.64%. Release studies were performed at pH 7.4. Optimum conditions were determined as GA/NaAlg ratio 1/8. The microspheres were found to arrest GA and exhibit a controlled release profile. Microspheres were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC), X-Ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) analysis. GA retained its antioxidant activity determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) method and anticancer activity on Caco-2 cells. Further studies are necessary on GA-loaded NaAlg microspheres which have high potential to be used in adjunct and complementary therapies.  相似文献   

9.
Copper complexes with strong anticancer activity are promising new drugs for treatment of patients with metastatic cancer. Copper 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazide (CuHQTS) and copper 8-hydroxyquinoline-2-carboxaldehyde-4,4-dimethyl-3-thiosemicarbazide (CuHQDMTS) were found to have strong anticancer activity against cisplatin-resistant neuroblastoma cells and prostate cancer cells. This study aimed to synthesize and characterize two new anticancer copper complexes, copper complex of (4R)-(?)-2-Thioxo-4-thiazolidinecarboxylic acid (CuTTDC), and copper complex of 3-Rhodaninepropionic acid-copper complex (CuRDPA). Cell growth inhibition and cytotoxicity of CuTTDC and CuRDPA on prostate and breast cancer cells were evaluated with Cell Counting Kits-8 (CCK8) assay and fluorescent microscopic imaging respectively. Strong anticancer activity of CuTTDC and CuRDPA was demonstrated by growth inhibition and cytotoxicity of prostate and breast cancer cells treated with these two copper complexes, supporting further investigation of potential use of these two new anticancer complexes for treatment of prostate and breast cancer metastasis.  相似文献   

10.
Copper 8-hydroxyquinoline-2-carboxaldehyde–thiosemicarbazide (CuHQTS) and copper 8-hydroxyquinoline-2-carboxaldehyde–4,4-dimethyl-3-thiosemicarbazide (CuHQDMTS) are two copper thiosemicarbazone complexes with potent anticancer activity on cisplatin-resistant neuroblastoma cells. This study aimed to evaluate anti-prostate cancer activity of these two copper complexes in vitro. Both CuHQTS and CuHQDMTS inhibited proliferation of prostate cancer cells and showed cytotoxicity on prostate cancer cells carrying green fluorescent protein (GFP) by fluorescent microscopic imaging. The findings of this study demonstrated anti-prostate cancer activity of CuHQTS and CuHQDMTS and suggested that GFP-carrying prostate cancer cells might be used for testing anticancer activity of copper complexes by fluorescent microscopic imaging.  相似文献   

11.
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015–1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM−1 cm−2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.  相似文献   

12.
Bismuth vanadate (BiVO4) spindle particles with monoclinic scheelite structure have been successfully synthesized via a facile sonochemical method. The as-prepared BiVO4 photocatalyst exhibited a hollow interior structure constructed from the self-assembly of cone shape primary nanocrystals. A possible oriented attachment growth mechanism has been proposed based on the results of time-dependent experiments, which indicates the formation of spindle particles is mainly attributed to the phase transformation procedure induced by ultrasound irradiation. A series of morphology evolutions of BiVO4 from compact microspheres, to hollow microspheres, and then to spindle particles have been arrested in the process of sonochemical treatment. Optical absorption experiments revealed the BiVO4 spindle had strong absorption in the visible light region. A much higher photocatalytic activity of these spindle particles was found in comparison with the SSR-BiVO4 material for degradation of rhodamine-B under visible light irradiation, which may be ascribed to its special single-crystalline nanostructure.  相似文献   

13.
We report the synthesis of novel biodegradable nanoparticles (NPs) which can kill the cancer cells without any additional drug loading. The NP was a self-assembled form of a phthalimide based conjugate, in which the phthalimide moiety was responsible for the anticancer activity. We describe the synthesis of a novel 2-(N-phthalimido) ethyl palmitate (PHEP-Pal) conjugate and subsequent preparation of NPs by a simple self assembly process. The successful synthesis of conjugate was confirmed by various characterization studies including nuclear magnetic resonance spectroscope, Fourier transform infrared spectroscope, TOF-liquid chromatography mass spectroscope, differential scanning calorimetry, and X-ray diffraction unit. The synthesis, shape, size, and size distribution of PHEP-Pal NPs were determined by transmission electron microscope, atomic force microscope, and dynamic light scattering technique. Finally, cell culture studies using A549 and HeLa cells were done to evaluate the anticancer effect of PHEP-Pal NPs, which demonstrated the potency of these NPs for use in cancer chemotherapy.  相似文献   

14.
Avidin microspheres were prepared using the sonochemical method. It was found that avidin microspheres can bind biotin, but to a lesser degree than the native protein. The binding of the biotin molecules to the avidin microspheres was probed primarily by TPD measurements.  相似文献   

15.
Functionalization of naringin (Nar) on a nanomaterials surface will decrease their detrimental side effects and escape them from immunological rejection. In this study, we developed a sustainable green chemistry route to fabricate naringin-reduced graphene oxide nanosheets (rGO@Nar) through the easy method. The hydroxyl group of Naringin reduces and generates the functionalization of rGO@Nar, and it was confirmed through various spectroscopic method (FT-IR and Raman) and electroscopic methods (FE-SEM and HR-TEM). After careful evaluation of the nanocomposion, we performed cancer cell growth inhibition properties of the colon cancer cell line and Human vein endothelial cells (HT-29 and HUVEC). Also, we performed the photothermal effects of these nanocomposites on cell proliferation and apoptosis using different biochemical staining. Our in vitro investigational datas are established rGO@Nar effectively exhibited and also with rGO@Nar?+?NIR the photothermal conversion therapy improved prostate cancer cells abolishing the cancer cells. More interestingly rGO@Nar?+?NIR was found to surpass the activity of rGO@Nar in colon cancer cells tested a topnotches. Thus, our study suggests that rGO@Nar?+?NIR could be used as impending anticancer candidate for photothermal ablation of prostate cancer cells. Further examinations of the mechanism indicated that anticancer activity was accomplished by inducing apoptosis in cancer cells.  相似文献   

16.
The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.  相似文献   

17.
The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose.  相似文献   

18.
This study focused on the preparation and characterization of magnetic targeted antibiotic microspheres (MTAMs). MTAMs were prepared by a sonochemical method in the presence of hydrophobic Fe3O4 nanoparticles and tetracycline. The properties of MTAMs were characterized by transmission electron microscopy, Fourier-transform infrared spectrum, thermogravimetric analysis, vibration sample magnetometry, and bacteriostatic experiment. The results indicated that the superparamagnetic microspheres have ultrafine size (below 230 nm), high saturation magnetization (80.90 emu/g), high biocompatibility, biodegradability, controlled-release, and antibiotic effect. It has been proved that MTAMs can carry out the function of magnetic targeted drugs delivery system by putting together magnetic materials and antibiotics. The possible formation mechanism of MTAMs was also discussed. In summary, MTAMs had potential in medical imaging, drug targeting, and catalysis.  相似文献   

19.
In this study, the immobilization of glucose oxidase (GOD) onto micron-size monodisperse Poly(Styrene-Glycidyl Methacrylate-Sodium Sulfonate Styrene) microspheres was investigated. In order to improve their surface biocompatibility, bovine serum albumin (BSA) was introduced onto the microspheres’ surface as a new type of spacer arm. Both the immobilization amount and enzymatic activity were determined in different experimental conditions (enzyme concentration, pH, temperature, etc.). It was found that BSA could serve as a good spacer because it increases both the immobilization amount and enzymatic activity of GOD. The tolerance of immobilized GOD against pH, temperatures was examined. Moreover, the kinetic parameters for native and immobilized GOD were obtained and compared.  相似文献   

20.
Spherical SPIO nanoparticles were synthesized and embedded in polyglucosamine (chitosan) by a sonochemical method. The embedded microspheres were shifted out in the range of 100–150 μm. The microspheres were injected into the kidney of a New Zealand white rabbit via an angiographic catheter, and detected in magnetic resonance images of the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号