首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave spectral assignments have been made for the ground and several excited vibrational states of the normal and amino d1 species of methylaminoethane. The inversion-rotation spectrum is consistent with a trans rotameric form with an amino inversion barrier of ~5.2 kcal mole?1. The dipole moment of 8.88 ± 0.02 Debye has components |μa| = 0.00 ± 0.03, |μb| = 0.25 ± 0.03, and |〈 ± μc ? 〉| = 0.84 ± 0.01 Debye. The normal species N14 nuclear quadrupole coupling constants are (in MHz) 2.82 ± 0.09, 0.88 ± 0.13, and ?3.70 ± 0.09 for χaa, χbb, and χcc, respectively.  相似文献   

2.
The microwave spectrum of tetrahydropyran-4-one has been studied in the frequency region 18 to 40 GHz. The rotational constants for the ground state and nine vibrationally excited states have been derived by fitting a-type R-branch transitions. The rotational constants for the ground state are (in MHz) A = 4566.882 ± 0.033, B = 2538.316 ± 0.003, C = 1805.878 ± 0.004. From information obtained from the gas-phase far-infrared spectrum and relative intensity measurements, these excited states are estimated to be ~ 100 cm?1 above the ground state for the first excited state of the ring-bending and ~ 185 cm?1 for the first excited state of the ring-twisting mode. Stark displacement measurements were made for several transitions and the dipole moment components determined by least-squares fitting of the displacements: (in Debye) |μa| = 1.693 (0.001), |μb| = 0.0, |μc| = 0.300 (0.013) yielding a total dipole moment μtot = 1.720 (0.003). A model calculation to reproduce the rotational parameters indicates that the data are consistent with the chair conformation.  相似文献   

3.
The microwave spectra of 3-aminopropanol and three of its deuterium substituted isotopic species have been investigated in the 26.5 to 40 GHz frequency region. The rotational spectrum of only one conformer has been assigned in which presumably a hydrogen bond of the OH---N type exists. The rotational spectra of a number of excited vibrational states have been observed and assignments made for some of these excited states. The average intensity ratio for the rotational transitions between the ground and excited vibrational states indicates that the first excited state is about 120 cm?1 above the ground state.and the next higher state is roughly 200 cm?1 above the ground vibrational state. The dipole moment was determined from the Stark effect measurements to be 3.13 ± 0.04 D with its principal axes components as |μa| = 2.88 ± 0.03 D, |μb| = 1.23 ± 0.04 D and |μc| = 0.06 ± 0.01 D. The possibility of another conformer where the hydrogen bond could be of NH---O type was explored, but the spectra of such a conformer could not be identified.  相似文献   

4.
The microwave spectra of the ground and five excited states of a second gauche rotamer of allylamine have been measured and assigned. Three of the excited states belong to the same mode, most probably the CC torsion, the second and third vibrational states present a symmetrical splitting due to tunneling effect. The spectrum was conclusively identified as due to the N-gauche, lone-electron-pair trans form by means of the N-quadrupole coupling constants and dipole moment components. The variation observed for the quadrupole coupling constants in the different vibrationally excited states was explained by a suitable model. The ground state constants are (in MHz) A0 = 23 957.05 ± 0.048, B0 = 4 229.96 ± 0.025, C0 = 4 154.91 ± 0.025, χaa = ? 1.48 ± 0.04, χbb - χcc = ? 1.42 ± 0.04, and (in D) ∥μa∥ = 0.766 ± 0.010, ∥μb∥ = 0.700 ± 0.005, ∥μc∥ = 0.290 ± 0.020.The excited states of the N-cis, lone-electron-pair trans form were also measured and assigned; two of these states appear to belong to the CC torsion as indicated by their intertial defects. The potential hindering the internal CC rotation was calculated using the relative intensity data of the N-cis and N-gauche forms as well as the tunneling splittings. A three-term cosine potential was fitted to the data yielding (in cm?1) V1 = ? 77 ± 85, V2 = 170 ± 126, V3 = 663 ± 95. The Dennison-Uhlenbeck potential was used for an approximate calculation of the N-trans barrier separating the two identical N-gauche forms. The barrier obtained was 1.9 ± 0.3 Kcal/mole.  相似文献   

5.
The microwave spectra of the skew-3-iodopropene in its torsionally excited state were studied in the region 15 to 23 GHz. From the analyses of the a-type R-branch and b-type Q-branch transitions, the rotational constants and the elements of the χ-tensor were obtained: A1 = 17 783.84 ± 0.77, B1 = 1591.26 ± 0.02, C1 = 1540.24 ± 0.02, χaa = ?1333 ± 8, χbb = 386 ± 4, χcc = 947 ± 6, and |χab| = 1086 ± 2, each in MHz for the first torsionally excited state, and A2 = 17 915.85 ± 1.38, B2 = 1594.49 ± 0.03, C2 = 1541.85 ± 0.03, χaa = ?1319 ± 10, χbb = 383 ± 5, χcc = 936 ± 8, and |χab| = 1073 ± 3, each in MHz for the second torsionally excited state, respectively. From the observed line intensity, the torsional frequencies of the CH2I group between the ground and the first excited states and also between the first and second excited states were obtained to be 114 ± 34 and 80 ± 24 cm?1, respectively.  相似文献   

6.
The microwave spectrum of normal trans-ethylamine CH3CH2NH2 and that of the -NHD and -ND2 species were measured and assigned. The obtained rotational constants for the ground state of the normal species are (in MHz): A = 31 758.33 ± 0.08, B = 8749.157 ± 0.025, and C = 7798.905 ± 0.025. The fitted dipole moment components are (in Debye): |μ|a = 1.057 ± 0.006, |μb| = 0.764 ± 0.009, and |μt| = 1.304 ± 0.011. The quadrupole coupling constants were fitted as (in MHz): χ+ = 1.62 ± 0.035 and χ? = ?1.89 ± 0.08. Analysis of the HFS of the deuterated species -ND2 allowed the experimental determination of the principal quadrupole tensor values (in MHz): χzz = ?4.68 ± 0.20, χyy = 1.75 ± 0.06, and χxx = 2.93 ± 0.20. The angle between the CN bond and the direction of the χzz quadrupole tensor component was fitted as 108.9° ± 0.6° and agreed with the expected general direction of the lone electron pair.  相似文献   

7.
The microwave spectrum of 3-oxabicyclo(3.1.0.)hexane has been studied in the range 26.5–40 GHz (R-band) with a Hewlett Packard Model 8400 spectrometer. Both a and c-type R-branch transitions were used to derive the rotational constants for the ground state and first two excited states of the ring-puckering mode. The data are consistent with a single stable conformation, in agreement with a previous far-infrared study (1) and this is shown to be the boat conformation, as was the case with the similar molecules cyclopentene oxide (2, 3) (6-oxabicyclo(3.1.0.)hexane) and 3,6-dioxabicyclo(3.1.0.)hexane (1, 4). The rotational constants for the ground state are (in MHz) A = 6038.06; B = 4432.47; C = 3303.43 yielding κ = ? 0.174268. The electric dipole moment components of the ground state (in Debye units) are |μa| = 1.36 ± 0.02; |μc| = 1.03 ± 0.02 yielding a total dipole moment μ = 1.71 ± 0.03.  相似文献   

8.
The microwave spectra of the normal and four monosubstituted 13C isotopic species of bicyclo[3.1.0]hex-2-ene have been observed and analyzed. For the normal species the rotational constants (in megahertz) are: Λ = 6306.121 ± 0.006, B = 4516.667 ± 0.004, C = 3208.823 ± 0.002. From the complete data set, a partial rs heavy-atom structure has been obtained as well as a complete effective structure. The rs distances are found to be C1C5 = 1.521 ± 0.001 Å, C1C2 = 1.494 ± 0.010 Å, C5C6 = 1.482 ± 0.006 Å, C1C6 = 1.522 ± 0.007 Å. The overall effective structure shows the five-membered ring to be only slightly nonplanar (by ca. 6°), and the three-membered ring to be rather sharply inclined with respect to the five-membered ring (dihedral angle C1C5C6-C1C5C4 = 113.5°). Dipole moment measurements for the symmetryless molecule yielded values of |μa| = 0.166 ± 0.009, |μb| = 0.209 ± 0.015, |μc| = 0.119 ± 0.001, |μT| = 0.292 ± 0.012 D.  相似文献   

9.
The microwave spectrum of 4-pyridine carbaldehyde has been investigated in the region 8 to 40 GHz. Rotational transitions have been observed and assigned for the ground state and two excited states of the torsion mode. Analysis yields precise rotational constants (A = 5519.04 ± 0.08, B = 1559.17 ± 0.03, C = 1216.11 ± 0.02 MHz) which prove the molecule to be planar. Centrifugal distortion constants have also been obtained. Analysis of the observed 14N quadrupole fine structure yields the following quadrupole coupling constants (in MHz): χaa = ?4.67 ± 0.09; χbb = 1.19 ± 0.26; χcc = 3.48 ± 0.26. The electric field gradient about the nitrogen nucleus is thus similar to that of pyridine.  相似文献   

10.
The microwave spectra of isopropylphosphine has been recorded in the region 12.4–40.0 GHz. Both a- and b-type transitions were observed and assigned. The rigid rotor rotational constants were determined to be A = 7633.34 ± 0.09, B = 4243.36 ± 0.02, and C = 3045.84 ± 0.02 MHz for (CH3)2CHPH2 and A = 7226.47 ± 0.05, B = 4041.06 ± 0.02, and C = 2946.85 ± 0.02 MHz for (CH3)2CHPD2. Dipole moment components of |μa| = 1.15 ± 0.01, |μb| = 0.43 ± 0.01, |μc| = 0.03 ± 0.02 and |μt| = 1.23 ± 0.01 were determined from the Stark effect. From the microwave spectra, the Stark effect and the experimental rotational constants, the assigned spectrum has been identified to result from the gauche form and this conformer is believed to be more stable than the other form which is present at room temperature.  相似文献   

11.
The microwave spectra of SiH3PD2 have been recorded in the range 26.5–40.0 GHz. Both a- and c-type transitions were observed and assigned. The rigid rotor rotational constants were determined to be A = 37589.06 ± 0.11, B = 5315.70 ± 0.02, and C = 5258.70 ± 0.02 MHz. The barrier to internal rotation has been calculated from the A-E splittings to be 1512 ± 26 cal/mole. The dipole moment components of |μa| = 0.22 ± 0.01, |μc| = 0.56 ± 0.01, and |μt| = 0.60 ± 0.01 D were determined from the Stark effect. By using previously determined microwave data for SiH3PH2, several structural parameters have been calculated and their values are compared to similar ones in other compounds. The Raman (0–2500 cm?1) spectra of gaseous, liquid, and solid SiH3PH2 and gaseous SiH3PD2 have been recorded and interpreted in detail on the basis of Cs molecular symmetry.  相似文献   

12.
The molecular rotational spectrum of 3-butynenitrile (3BN, propargyl cyanide), HCCCH2CN, has been investigated in the vibrational ground state. A total of 222 transitions up to J = 69 have been measured between 8 and 300 GHz. The Hamiltonian used for the spectral analysis was required to include all centrifugal terms of fourth and sixth orders and one term of eighth order in the angular momentum components in order to reproduce the transition frequencies within the experimental error. Significant values for the respective distortion coefficients could be determined. The molecular dipole moment components were calculated from measured Stark effect shifts as |μa| = (3.23 ± 0.05) D, |μb| = (2.34 ± 0.02) D; μtot = (3.99 ± 0.05) D.  相似文献   

13.
The microwave spectra of tertiarybutylphosphine (CH3)3CPH2, (CH3)3CPHD, and (CH3)3CPD2 have been recorded in the region 26.5–40.3 GHz. Both a- and c-type transitions were observed and assigned for the “light” and “heavy” molecules and a-type transitions were observed and assigned for the d1 species. The rigid rotor rotational constants were determined to be A = 4397.63 ± 0.04, B = 2878.88 ± 0.02, and C = 2870.86 ± 0.02 MHz for (CH3)3CPH2 and A= 4261.98 ± 0.04, B = 2769.82 ± 0.02, and C = 2752.71 ± 0.02 MHz for (CH3)3CPD2 and A = 4330 ± 2, B = 2831.45 ± 0.02, and C = 2801.50 ± 0.02 MHz for (CH3)3CPHD. Dipole moment components of |μa| = 1.06 ± 0.02, |μc| = 0.49 ± 0.02 and |μt| = 1.17 ± 0.02D were determined from the Stark effect. By assuming reasonable structural parameters for the tertiarybutyl and phosphine groups, a least-squares fit of the rotational constants gave λP-C = 1.896 A? and ?CPH = 95.7°. No splitting was observed of the first excited state of the phosphine torsional mode.  相似文献   

14.
Microwave spectra have been observed and assigned for the axial and equatorial conformations of 4-cyanocyclopentene. For the axial species the rotational constants in megahertz are A = 5095.77, B = 2185.81, and C = 1936.50; for the equatorial species the values are A = 6762.66, B = 1916.72, and C = 1590.60. Dipole moment measurements yielded |μa| = 3.48 D and |μc| = 2.51 D for the axial form and |μa| = 3.85 D and |μc| = 1.10 D for the equatorial form. Relative intensity measurements showed the equatorial conformer to be 400 ± 60 cal mole?1 lower in energy. Several sets of vibrational satellites were observed and natural abundance C13 spectra were obtained for the equatorial conformer.  相似文献   

15.
The microwave spectra of 4-thiacyclohexanone in the ground state and eight vibrationally excited states have been studied in the frequency region 18.0–40.0 GHz and the corresponding rotational constants have been determined. The following values of the ground-state rotational constants (MHz) were obtained from the analysis of the a-type transitions: A = 3935.149 (0.031), B = 1829.444 (0.001), and C = 1364.609 (0.001). Analysis of the Stark effect gives for the dipole components (in Debye units) μa = 1.409 (0.002), μc = 0.391 (0.064). These data are consistent with a chair conformation for the ring. A phisically reasonable set of structural parameters which reproduce the ground-state rotational constants has been derived. A qualitative estimate of the low-frequency vibrational modes was obtained from relative-intensity measurements. The lowest vibrational frequency is believed to be a ring-bending mode and it occurs at 77 ± 22 cm?1 while the ring-twisting mode is at 204 ± 27 cm?1.  相似文献   

16.
The rotational spectrum of 3-methylcyclopentanone has been observed in the frequency region from 18.0 to 26.5 GHz. Both a-type and b-type transitions in the ground vibrational state and a-type transitions in five excited states have been assigned. The ground state rotational constants are determined to be A = 5423.32 ± 0.18, B = 1949.51 ± 0.01, and C = 1529.59 ± 0.01 MHz. Analysis of the measured quadratic Stark effects gives the dipole moment components ∥μa∥ = 2.97 ± 0.02, ∥μb∥ = 1.00 ± 0.03, ∥μc∥ = 0.18 ± 0.06, and the total dipole moment ∥μt∥ = 3.14 ± 0.03 D. These data are consistent with a twisted-ring conformation with a methyl group in the equatorial position.  相似文献   

17.
Microwave spectra of chlorine nitrate (35ClNO3 and 37ClNO3) in the ground and first excited vibrational states have been analyzed in detail. Rotational constants and centrifugal distortion parameters are reported for each species. The permanent electric dipole moment in ClNO3 was found to have two components, μa = 0.72 ± 0.07 D and μb = 0.28 ± 0.02 D.  相似文献   

18.
Microwave spectra of the ground and first three excited torsional states of N-sulphinylaniline have been assigned. The variation of the inertial defect with torsional number shows the molecule to be planar. The torsional frequency has been determined as ν = 41.1 cm?1 and the barrier to internal rotation as V2 = 2.3 kcal/mole. From the splittings of the Stark lobes of some lines the values μa = 2.20 ± 0.06, μb = 0.664 ± 0.005, and μtot = 2.30 ± 0.06 were obtained.  相似文献   

19.
The rotational spectrum of cyanocyclobutane has been investigated in the region 18.0–40.0 GHz. Only A-type transitions were observed. R-branch assignments have been made for the ground state and the first three excited states of the ring puckering mode as well as the first two excited states of the out-of-plane cyano-bending mode. The microwave data are consistent with a bent equilibrium ground state for the ring with the cyano-group in the equatorial position. The dipole moment components were determined to be μa = 4.04 ± 0.09 D and μc = 0.92 ± 0.03 D with the total dipole moment, μ, having a value of 4.14 ± 0.09 D.  相似文献   

20.
The microwave spectra of the two 79Br and 81Br isotopic species of normal propyl bromide were measured in the frequency region 10–30 GHz. The a-type R-branch and b-type Q-branch transitions of one conformer, gauche, were assigned and the rotational constants of the ground state were determined to be A = 11 034.346, B = 2277.725, and C = 2024.525 MHz for the 79Br species, and A = 11 027.924, B = 2261.019, and C = 2011.115 MHz for the 81Br species. The nuclear quadrupole coupling constants were determined to be χaa = 256.9, χbb = ?9.5, χcc = ?247.4, and |χab| = 380.0 MHz for 79Br species and χaa = 214.1, χbb = ?8.1, χcc = ?206.0, and |χab| = 311.9 MHz for 81Br species. Assuming the values of χbc and χca to be zero, the principal values of the χ tensor have been evaluated to be χxx = ?279.0, χyy = ?247.4, χzz = 526.4 MHz for 79Br species and χxx = ?228.1, χyy = ?206.0, and χzz = 434.1 MHz for 81Br species. From the relative intensity measurements the energy differences between the ground and first excited states, and the ground and second excited states, associated with the central CC torsion around the α and β carbon bonds were found to be 127 and 211 cm?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号