首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper treats the quasilinear, parabolic boundary value problem uxx ? ut = ??(x, t, u)u(0, t) = ?1(t); u(l, t) = ?2(t) on an infinite strip {(x, t) ¦ 0 < x < l, ?∞ < t < ∞} with the functions ?(x, t, u), ?1(t), ?2(t) being periodic in t. The major theorem of the paper gives sufficient conditions on ?(x, t, u) for this problem to have a periodic solution u(x, t) which may be constructed by successive approximations with an integral operator. Some corollaries to this theorem offer more explicit conditions on ?(x, t, u) and indicate a method for determining the initial estimate at which the iteration may begin.  相似文献   

2.
In this paper we study the existence, uniqueness, and regularity of the solutions for the Cauchy problem for the evolution equation ut + (f (u))x ? uxxt = g(x, t), (1) where u = u(x, t), x is in (0, 1), 0 ? t ? T, T is an arbitrary positive real number,f(s)?C1R, and g(x, t)?L(0, T; L2(0, 1)). We prove the existence and uniqueness of the weak solutions for (1) using the Galerkin method and a compactness argument such as that of J. L. Lions. We obtain regular solutions using eigenfunctions of the one-dimensional Laplace operator as a basis in the Galerkin method.  相似文献   

3.
We study degeneration for ? → + 0 of the two-point boundary value problems
τ?±u := ?((au′)′ + bu′ + cu) ± xu′ ? κu = h, u(±1) = A ± B
, and convergence of the operators T?+ and T?? on L2(?1, 1) connected with them, T?±u := τ?±u for all
u?D(T?±, D(T?±) := {u ? L2(?1, 1) ∣ u″ ? L2(?1, 1) &; u(?1) = u(1) = O}, T0+u: = xu′
for all
u?D(TO+), D(TO+) := {u ? L2(?1, 1) ∣ xu′ ? L2(?1, 1) &; u(?1) = u(1) = O}
. Here ? is a small positive parameter, λ a complex “spectral” parameter; a, b and c are real b-functions, a(x) ? γ > 0 for all x? [?1, 1] and h is a sufficiently smooth complex function. We prove that the limits of the eigenvalues of T?+ and of T?? are the negative and nonpositive integers respectively by comparison of the general case to the special case in which a  1 and bc  0 and in which we can compute the limits exactly. We show that (T?+ ? λ)?1 converges for ? → +0 strongly to (T0+ ? λ)?1 if R e λ > ? 12. In an analogous way, we define the operator T?+, n (n ? N in the Sobolev space H0?n(? 1, 1) as a restriction of τ?+ and prove strong convergence of (T+?,n ? λ)?1 for ? → +0 in this space of distributions if R e λ > ?n ? 12. With aid of the maximum principle we infer from this that, if h?C1, the solution of τ?+u ? λu = h, u(±1) = A ± B converges for ? → +0 uniformly on [?1, ? ?] ∪ [?, 1] to the solution of xu′ ? λu = h, u(±1) = A ± B for each p > 0 and for each λ ? C if ? ?N.Finally we prove by duality that the solution of τ??u ? λu = h converges to a definite solution of the reduced equation uniformly on each compact subset of (?1, 0) ∪ (0, 1) if h is sufficiently smooth and if 1 ? ?N.  相似文献   

4.
In this article we discuss the solution of boundary value problems which are described by the linear integrodifferential equation ?xu?t (t, x) + u(t, x) ? 1π12?∞exp(?y2) u(t, y) dy = 0, where tJ?R, xR. We interpret the equation in functional form as an ordinary differential equation for the mapping u:JL2(R,μ), where L2(R,μ) is a weighted L2-space. Emphasis is on the constructive aspects of the solution and on finding representations of the relevant isomorphisms.  相似文献   

5.
Sufficient conditions are developed for the null-controllability of the nonlinear delay process (1) x?(t) = L(t, xt) + B(t) u(t) + f(t, xt, u(t)) when the values of the control functions u lie in an m-dimensional unit cube Cm of Em. Conditions are placed on f which guarantee that if the uncontrolled system x?(t) = L(t, xt) is uniformly asymptotically stable and if the linear control system x(t) = L(t, xt) + B(t) u(t) is proper, then (1) is null-controllable.  相似文献   

6.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

7.
Asymptotic properties of solutions of the nonlinear Klein-Gordon equation ?t2u ? Δu + m2u + f(u) = 0 (NLKG) 0 = θ, ?t0 = Ψ, are investigated, which are inherited from the corresponding solutions v of the (linear) Klein-Gordon equation ?t2v ? Δv + m2v = 00 = θ, ?t0 = Ψ, (KG) In particular, the finiteness of time-integrals in Lq over R+ of certain Sobolevnorms in space of the solution is proved to be such a hereditary property. Together with a device by W. A. Strauss and a weak decay result for the (KG) due to R. S. Strichartz, this is used to prove that under suitable restrictions on the nonlinearity, the scattering operator for the (NLKG) is defined on all of L21 × L2 for n = 3.  相似文献   

8.
For each t ? 0, let A(t) generate a contraction semigroup on a Banach space L. Suppose the solution of ut = ?A(t)u is given by an evolution operator V?(t, s). Conditions are given under which V?((t+s)?, s?) converges strongly as ? → 0 to a semigroup T(t) generated by the closure of A?f ≡ limT→∞(1T) ∝0TA(t)f dt.This result is applied to the following situation: Let B generate a contraction group S(t) and the closure of ?A + B generate a contraction semigroup S?(t). Conditions are given under which S(?t?) S?(t?) converges strongly to a semigroup generated by the closure of A?f ≡ limT→∞(1T) ∝ S(?t) AS(t)f dt. This work was motivated by and generalizes a result of Pinsky and Ellis for the linearized Boltzmann Equation.  相似文献   

9.
In this paper we study the behavior of solutions of some quasilinear parabolic equations of the form
(?u?t) ? i=1n (ddxi) ai(x, t, u, ux) + a(x, t, u, ux)u + f(x, t) = O,
as t → ∞. In particular, the solutions of these equations will decay to zero as t → ∞ in the L norm.  相似文献   

10.
The existence of a unique strong solution of the nonlinear abstract functional differential equation u′(t) + A(t)u(t) = F(t,ut), u0 = φεC1(¦?r,0¦,X),tε¦0, T¦, (E) is established. X is a Banach space with uniformly convex dual space and, for t? ¦0, T¦, A(t) is m-accretive and satisfies a time dependence condition suitable for applications to partial differential equations. The function F satisfies a Lipschitz condition. The novelty of the paper is that the solution u(t) of (E) is shown to be the uniform limit (as n → ∞) of the sequence un(t), where the functions un(t) are continuously differentiate solutions of approximating equations involving the Yosida approximants. Thus, a straightforward approximation scheme is now available for such equations, in parallel with the approach involving the use of nonlinear evolution operator theory.  相似文献   

11.
12.
For parabolic initial boundary value problems various results such as limt ↓ 0{(?ut6x)(0, t)(?uα?x)(0, t)} = 1, where u satisfies ?u?t = a(u)(?2u?x2), 0 < x < 1, 0 < t ? T, u(x, 0) = 0, u(0, t) = |1(t), 0 < t ? T, u(1, t) = |2(t), 0 < t ? T, uαsatisfies (?uα?t) = α(?2uα?x2), 0 < x < 1, 0 < t ? T, uα(x, 0) = 0, uα(0, t) = |1(t), 0 < t ? T, uα(1, t) = |2(t), 0 < t ? T, and α = a(0), are demonstrated via the maximum principle and potential theoretic estimates.  相似文献   

13.
Numerical approximation of the solution of the Cauchy problem for the linear parabolic partial differential equation is considered. The problem: (p(x)ux)x ? q(x)u = p(x)ut, 0 < x < 1,0 < t? T; u(0, t) = ?1(t), 0 < t ? T; u(1,t) = ?2(t), 0 < t ? T; p(0) ux(0, t) = g(t), 0 < t0 ? t ? T, is ill-posed in the sense of Hadamard. Complex variable and Dirichlet series techniques are used to establish Hölder continuous dependence of the solution upon the data under the additional assumption of a known uniform bound for ¦ u(x, t)¦ when 0 ? x ? 1 and 0 ? t ? T. Numerical results are obtained for the problem where the data ?1, ?2 and g are known only approximately.  相似文献   

14.
We shall examine the control problem consisting of the system dxdt = f1(x, z, u, t, ?)?(dzdt) = f2(x, z, u, t, ?) on the interval 0 ? t ? 1 with the initial values x(0, ?) and z(0, ?) prescribed, where the cost functional J(?) = π(x(1, ?), z(1, ?), ?) + ∝01V(x(t, ?), z(t, ?), u(t, ?), t, ?) dt is to be minimized. We shall restrict attention to the special problem where the fi's are linear in z and u, V is quadratic in z and independent of z when ? = 0, π and V are positive semidefinite functions of x and z, and V is a positive definite function of u. Under appropriate conditions, we shall obtain an asymptotic solution of the problem valid as the small parameter ? tends to zero. The techniques of constructing such asymptotic expansions will be stressed.  相似文献   

15.
Analyticity in t of solutions u(t) of nonlinear evolution equations of the form u′ + A(t, u)u = ?(t, u), t > 0, u(0) = u0, is established under suitable conditions on A(t, u), ?(t, u), and u0. An application is given to quasilinear parabolic equations.  相似文献   

16.
This paper deals with asymptotic behavior for (weak) solutions of the equation utt ? Δu + β(ut) ? ?(t, x), on R+ × Ω; u(t, x) = 0, on R+ × ?Ω. If ?∈L∞(R+,L2(Ω)) and β is coercive, we prove that the solutions are bounded in the energy space, under weaker assumptions than those used by G. Prouse in a previous work. If in addition ?t∈S2(R+,L2(Ω)) and ? is srongly almost-periodic, we prove for strongly monotone β that all solutions are asymptotically almost-periodic in the energy space. The assumptions made on β are much less restrictive than those made by G. Prouse: mainly, we allow β to be multivalued, and in the one-dimensional case β need not be defined everywhere.  相似文献   

17.
The authors investigate the Tjon-Wu (TW) equation: (TW)
?u?t(t, x) + u(t, x) = ∫xdyy0y u(t, y ? z) u(t, z)dz, u(0, x) = u0(x)
, which has been obtained from a classical Boltzmann equation by applying the Abel transform. (TW) is considered as an ordinary differential equation first in the space L2={u:[0,∞)→R|∫x|u(x)|2exdx < + ∞}The authors establish existence and uniqueness of solutions in disks of codimension 2 around 0 and around e?x. Asymptotic stability of these latter functions is also established. The basic tool is an unusual eigenvalue property of the nonlinear right-hand side of (TW) which leads to a reformulation of (TW) as a differential equation in l2. Similar results are established in L1 working with (TW) directly.  相似文献   

18.
n independent adiabatic invariants in involution are found for a slowly varying Hamiltonian system of order 2n × 2n. The Hamiltonian system considered is ?u? = A(t)u as ? → 0+, where A(t) is a 2n × 2n real matrix with distinct, pure imaginary eigen values for each t? [?∞, ∞], and d(j)Adt(j) ? Lj(?∞, ∞), for all j > 0. The adiabatic invariants Is(u, t), s = 1,…, n are expressed in terms of the eigen vectors of A(t). Approximate solutions for the system to arbitrary order of ? are obtained uniformly for t? [?∞, ∞].  相似文献   

19.
We study the time optimal control of the system x?1 = x1?1(x1 , x2) + u1(t) g1(x1), x?2 = x2?2(x1, x2) + u2(t)g2(x2), where x1 is the size of the population of one species, x2 is the population size of the second species, ?1 and ?2 are the fractional growth rates of the respective species, g1 and g2 are nowhere vanishing functions of class C1(0, + ∞), and the control u(t) = (u1(t), u2(t)) takes on values in a closed rectangle. The functions ?1 and ?2 are chosen to represent prey-predator, competitive, and symbiotic interactions.We show, for the various interactions, that a time optimal control, if it exists, must be “bang-bang,” and give sufficient conditions for the controllability, and for the existence, of time optimal controls of the above system.  相似文献   

20.
Consider an elliptic sesquilinear form defined on V × V by J[u, v] = ∫Ωajk?u?xk\?t6v?xj + ak?u?xkv? + αju\?t6v?xj + auv?dx, where V is a closed subspace of H1(Ω) which contains C0(Ω), Ω is a bounded Lipschitz domain in Rn, ajk, ak, αj, a ? L(Ω), and Re ajkζkζj ? κ > 0 for all ζ?Cn with ¦ζ¦ = 1. Let L be the operator with largest domain satisfying J[u, v] = (Lu, v) for all υ∈V. Then L + λI is a maximal accretive operator in L2(Ω) for λ a sufficiently large real number. It is proved that (L + λI)12 is a bounded operator from V to L2(Ω) provided mild regularity of the coefficients is assumed. In addition it is shown that if the coefficients depend differentiably on a parameter t in an appropriate sense, then the corresponding square root operators also depend differentiably on t. The latter result is new even when the forms J are hermitian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号