首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Given a convex domain C and a positive integer k, inscribe k nonoverlapping convex domains into C, all of them similar to C. Denote by f(k) the maximal sum of their circumferences. In this paper it is shown, that for C square, parallelogram or triangle (1) the first increase of f(k) after k = l2 occurs not later than at k = l2 + 2, (2) constructions can be given, where the following lower bounds are attained for f(k) = f(l2 + j):
(1c) ? l + (j ? 1)2l j odd, l? 2
? l + j2(l + 1) jeven, l?2
where c denotes the circumference of C.  相似文献   

2.
Let k, l denote positive integers with (k, l) = 1. Denote by p(k, l) the least prime pl(mod k). Let P(k) be the maximum value of p(k, l) for all l. We show lim infP(k)(?(k) log k) ≥ eγ = 1.78107…, where γ is Euler's constant and ? is Euler's function. We also show P(k)(?(k) log k) → ∞ for almost all k.  相似文献   

3.
Let α(k, p, h) be the maximum number of vertices a complete edge-colored graph may have with no color appearing more than k times at any vertex and not containing a complete subgraph on p vertices with no color appearing more than h times at any vertex. We prove that α(k, p, h) ≤ h + 1 + (k ? 1){(p ? h ? 1) × (hp + 1)}1h and obtain a stronger upper bound for α(k, 3, 1). Further, we prove that a complete edge-colored graph with n vertices contains a complete subgraph on p vertices in which no two edges have the same color if
(n3)>(p3)Σi=1t(ei2)
where ei is the number of edges of color i, 1 ≤ it.  相似文献   

4.
Let s(k) be the smallest s such that if there exists a k-nowhere zero flow in a regular matroid M, then M can be covered by circuits, the total length of which is at most s|M|. A recursive formula for the evaluation of s(k) is given: s(kt) ≤ (s(k)(kt ? t) + s(t)(kt ? k))(kt ? 1). By means of this formula s(k) is found for k = 2, 3, 4, 6, 7, 8. “Natural” proofs for graph theoretical results are obtained.  相似文献   

5.
A study is made of the number of cycles of length k which can be produced by a general n-stage feedback shift register. This problem is equivalent to finding the number of cycles of length k on the so-called de Bruijn-Good graph (Proc. K. Ned. Akad. Wet.49 (1946), 758–764; J. London Math. Soc.21 (3) (1946), 169–172). The number of cycles of length k in such a graph is denoted by β(n, k). From the-de Bruijn-Good graph, it can be shown that β(n, k) is also the number of cyclically distinct binary sequences of length k which have all k successive sets of n adjacent digits (called “n windows”) distinct (the sequence to be considered cyclically). After listing some known results for β(n, k), we show that
β(k?3, k)=β(k, k)?2φk, 2+2 fork?5
, where φk, r? the number of integers l ? k such that (k, l) ? r, and (k, l) denotes the greatest common divisor of k and l. From the results of several computer programs, it is conjectured that
β(k?4, k)=β(k, k)?4φk, 3?2(k, 2)+10 (k?8)
,
β(k?5, k)=β(k, k)?8φk, 4?(k, 3)+19 (k?11)
β(k?6, k)=β(k, k)?16φk, 5?4(k, 2)?2(k, 3)+48 (k?15)
  相似文献   

6.
If h, kZ, k > 0, the Dedekind sum is given by
s(h,k) = μ=1kμkk
, with
((x)) = x ? [x] ? 12, x?Z
,
=0 , x∈Z
. The Hecke operators Tn for the full modular group SL(2, Z) are applied to log η(τ) to derive the identities (nZ+)
∑ ∑ s(ah+bk,dk) = σ(n)s(h,k)
,
ad=n b(mod d)
d>0
where (h, k) = 1, k > 0 and σ(n) is the sum of the positive divisors of n. Petersson had earlier proved (1) under the additional assumption k ≡ 0, h ≡ 1 (mod n). Dedekind himself proved (1) when n is prime.  相似文献   

7.
The Turán number T(n, l, k) is the smallest possible number of edges in a k-graph on n vertices such that every l-set of vertices contains an edge. Given a k-graph H = (V(H), E(H)), we let Xs(S) equal the number of edges contained in S, for any s-set S?V(H). Turán's problem is equivalent to estimating the expectation E(Xl), given that min(Xl) ≥ 1. The following lower bound on the variance of Xs is proved:
Var(Xs)?mmn?2ks?kns?1nk1
, where m = |E(H)| and m = (kn) ? m. This implies the following: putting t(k, l) = limn→∞T(n, l, k)(kn)?1 then t(k, l) ≥ T(s, l, k)((ks) ? 1)?1, whenever sl > k ≥ 2. A connection of these results with the existence of certain t-designs is mentioned.  相似文献   

8.
The natural action of U(k, l) on Ck + l leaves invariant a real skew non-degenerate bilinear form B, which turns Ck + l into a symplectic manifold (M, ω). The polarization F of M defined by the complex structure of Ck + l is non-positive. If L is the prequantization complex line bundle carried by (M, ω), then U(k, l) acts on the space U of square-integrable L ? ΛF1 forms on M, leaving invariant the natural non-degenerate, but non-definite, inner product ((·, ·)) on U. The polarization F also defines a closed, densely defined covariant differential ?? on U which is U(k, l)-invariant. Let denote orthocomplementation with respect to ((·, ·)). It is shown that the restriction of ((·, ·)) to the U(k, l)-stable subspace ? (Ker ??) ∩ (Im ??) is semi-definite and that the unitary representation of Uk, l on the Hilbert space H arising from ? by dividing out null vectors is unitarily equivalent to the representation of U(k, l) obtained from the tensor product of the metap ectic and Det?12 representations of MU(k, l), the double cover of U(k, l).  相似文献   

9.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

10.
A model for synchronized parallel computation is described in which all p processors have access to a common memory. This model is used to solve the problems of finding the maximum, merging, and sorting by p processors. The main results are: 1. Finding the maximum of n elements (1 < pn) within a depth of O(np + log logp); (optimal for p ≤ nlog log n). 2. Merging two sorted lists of length m and n (mn) within a depth of O(np + log n) for pn (optimal for p ≤ nlog n), O(logmlogpn) for p ≥ n(= O(k) if p = m1kn, k > 1). 3. Sorting n elements within a depth of O(nplogn + lognlogp) for pn, (optimal for p ≤ nlog n). O(log2nlogpn) + logn) for p ≥ n (= O(k logn) if p = n1+1k, k > 1). The depth of O(klogn) for p = n1+1k processors was also achieved by Hirschberg (Comm. ACM21, No. 8 1978, 657–661) and Preparata IEEE Trans ComputersC-27 (July 1978), 669–673). Our algorithm is substantially simpler. All the elementary operations including allocation of processors to their jobs are taken into account in deriving the depth complexity and not only comparisons.  相似文献   

11.
Let V be a set of n points in Rk. Let d(V) denote the diameter of V, and l(V) denote the length of the shortest circuit which passes through all the points of V. (Such a circuit is an “optimal TSP circuit”.) lk(n) are the extremal values of l(V) defined by lk(n)=max{l(V)|VVnk}, where Vnk={V|V?Rk,|V|=n, d(V)=1}. A set VVnk is “longest” if l(V)=lk(n). In this paper, first some geometrical properties of longest sets in R2 are studied which are used to obtain l2(n) for small n′s, and then asymptotic bounds on lk(n) are derived. Let δ(V) denote the minimal distance between a pair of points in V, and let: δk(n)=max{δ(V)|VVnk}. It is easily observed that δk(n)=O(n?1k). Hence, ck=lim supn→∞δk(n)n1k exists. It is shown that for all n, ckn?1k≤δk(n), and hence, for all n, lk(n)≥ ckn1?1k. For k=2, this implies that l2(n)≥(π212)14n12, which generalizes an observation of Fejes-Toth that limn→∞l2(n)n?12≥(π212)14. It is also shown that lk(n) ≤ [(3?√3)k(k?1)]nδk(n) + o(n1?1k) ≤ [(3?√3)k(k?1)]n1?1k + o(n1?1k). The above upper bound is used to improve related results on longest sets in k-dimensional unit cubes obtained by Few (Mathematika2 (1955), 141–144) for almost all k′s. For k=2, Few's technique is used to show that l2(n)≤(πn2)12 + O(1).  相似文献   

12.
A p-vertex graph is called pancyclic if it contains cycles of every length l, 3 ≤ lp. In this paper we prove the following conjecture of Bondy and Chvátal: If a graph G has vertex degree sequence d1d2 ≤ … ≤ dν, and if dk ≤ k < p2 implies dν?kp ? k, then G is pancyclic or bipartite.  相似文献   

13.
Let k1, k2,…, kn be given integers, 1 ? k1 ? k2 ? … ? kn, and let S be the set of vectors x = (x1,…, xn) with integral coefficients satisfying 0 ? xi ? ki, i = 1, 2, 3,…, n. A subset H of S is an antichain (or Sperner family or clutter) if and only if for each pair of distinct vectors x and y in H the inequalities xi ? yi, i = 1, 2,…, n, do not all hold. Let |H| denote the number of vectors in H, let K = k1 + k2 + … + kn and for 0 ? l ? K let (l)H denote the subset of H consisting of vectors h = (h1, h2,…, hn) which satisfy h1 + h2 + … + hn = l. In this paper we show that if H is an antichain in S, then there exists an antichain H′ in S for which |(l)H′| = 0 if l < K2, |(K2)H′| = |(K2)H| if K is even and |(l)H′| = |(l)H| + |(K ? l)H| if l>K2.  相似文献   

14.
Let k be an odd positive integer. Davenport and Lewis have shown that the equations
a1x1k+…+anxnk=0
with integer coefficients, have a nontrivial solution in integers x1,…, xN provided that
N?[36klog6k]
Here it is shown that for any ? > 0 and k > k0(?) the equations have a nontrivial solution provided that
N?8log 2+?k log k.
  相似文献   

15.
It has been known for some time that the trapezoidal rule Tnf = 12f(0) + f(1) + … + f(n ? 1) + 12f(n) is the best quadrature formula in the sense of Sard for the space W1,p, all functions such that f?Lp. In other words, the norm of the error functional Ef = ∝0nf(x) dx ? ∑k = 0nλkf(k) in W1,p is uniquely minimized by the trapezoidal sum. This paper deals with quadrature formulas of the form ∑k = 0nl?Jcklf(l)(k) where J is some subset of {0, 1,…, m ? 1}. For certain index sets J we identify the best quadrature formula for the space Wm,p, all functions such that f(m)?Lp. As a result, we show that the Euler-Maclaurin quadrature formula
Tnf + o<2v≤mB2v(2v)! (f (2v?1)(0) ? f (2v?1) (n))
is the best quadrature formula of the above form with J = {0, 1, 3,…, ?m ? 1} for the space Wm,p, providing m is an odd integer.  相似文献   

16.
We study properties of the polynomials φk(X) which appear in the formal development Πk ? 0n (a + bXk)rk = Σk ≥ 0φk(X) ar ? kbk, where rkl and r = Σrk. this permits us to obtain the coefficients of all cyclotomic polynomials. Then we use these properties to expand the cyclotomic numbers Gr(ξ) = Πk = 1p ? 1 (a + k)kr, where p is a prime, ξ is a primitive pth root of 1, a, bl and 1 ≤ rp ? 3, modulo powers of ξ ? 1 (until (ξ ? 1)2(p ? 1) ? r). This gives more information than the usual logarithmic derivative. Suppose that p ? ab(a + b). Let m = ?ba. We prove that Gr(ξ) ≡ cp mod p(ξ ? 1)2 for some cl, if and only if Σk = 1p ? 1kp ? 2 ? rmk ≡ 0 (mod p). We hope to show in this work that this result is useful in the study of the first case of Fermat's last theorem.  相似文献   

17.
Zarankiewicz, in problem P 101, Colloq. Math., 2 (1951), p. 301, and others have posed the following problem: Determine the least positive integer kα,β(m, n) so that if a 0,1-matrix of size m by n contains kα,β(m, n) ones then it must have an α by β submatrix consisting entirely of ones. This paper improves upon previously known upper bounds for kα,β(m, n) by proving that kαβ(m,n)?1+((β?1)(pα?1))(mα)+((p+1)(α?1)α)n for each integer p greater than or equal to α ? 1. Each of these inequalities is better than the others for a specific range of values of n. Equality is shown to hold infinitely often for each value of p. Finally some applications of this result are made to arrangements of lines in the projective plane.  相似文献   

18.
The author discusses the best approximate solution of the functional differential equation x′(t) = F(t, x(t), x(h(t))), 0 < t < l satisfying the initial condition x(0) = x0, where x(t) is an n-dimensional real vector. He shows that, under certain conditions, the above initial value problem has a unique solution y(t) and a unique best approximate solution p?k(t) of degree k (cf. [1]) for a given positive integer k. Furthermore, sup0?t?l ¦ p?k(t) ? y(t)¦ → 0 as k → ∞, where ¦ · ¦ is any norm in Rn.  相似文献   

19.
Let k and r be fixed integers such that 1 < r < k. Any positive integer n of the form n = akb, where b is r-free, is called a (k, r)-integer. In this paper we prove that if Qk,r(x) denotes the number of (k, r)-integers ≤ x, then Qk,r(x) = xζ(k)ζ(r) + Δk,r(x), where Δk,r(x) = O(x1rexp [?Blog35x (log log x)?15]), B being a positive constant depending on r and the O-estimate is uniform in k. On the assumption of the Riemann hypothesis, we improve the above order estimate of Δk,r(x) and prove that
1x1αδk,r(t)dt=0(x1kω(x))or0(x3/(4r+1)ω(x))
, according as k ≤ (4r + 1)3 or k > (4r + 1)3, where ω(x) = exp [B log x(log log x)?1].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号