首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The microwave spectra of 1-fluoro-2-propanol, CH 3CH(OH)CH 2F, and one deuterated species, CH3,CH(OD)CH2F, have been investigated in the 18–30 GHz spectral region. Only one rotamer with an intramolecular hydrogen bond formed between the fluorine atom and the hydroxyl group was assigned. This conformation is also characterized by having the C-F bond approximately anti to the methyl group. The FCCO dihedral angle is 59 ± 2° and the HOCC dihedral angle is 58 ± 3°. Further conformations, if they exist, are at least 0.75 kcal mol?1 less stable. Five vibrationally excited states belonging to four different normal modes were assigned and their fundamental frequencies determined. The barrier to internal rotation of the methyl group was found to be 2796 ± 50 cal mol?1. The dipole moment is μa = 0.510 ± 0.009 D, μb = 1.496 t 0.026 D, μc = 0.298 ± 0.014 D, and μtot = 1.608 ± 0.030 D. Extensive centrifugal distortion analyses were carried out for the ground and the first excited state of the heavy-atom torsional mode and accurate values were determined for all quartic and two sextic coefficients.  相似文献   

2.
Microwave spectra of CH2FCONH2, CH2FCOND(1)H(2), CH2FCONH-(1)D(2), and CH2FCOND2 are reported. The stable form of the molecule is shown to possess a planar FCCONH2 skeleton, with two out-of-plane hydrogens. The C-F and CO bonds are trans to one another and a weak intramolecular hydrogen bond is formed between the fluorine atom and the nearest amide group hydrogen atom stabilizing the identified rotamer. Other conformations are not present in concentrations exceeding 10% of the total. Nine vibrationally excited states were assigned. Six of these were attributed to the C-C torsional mode and one to the lowest in-plane bending mode. The first excited state of -NHz out-of-plane deformation mode was tentatively assigned. Relative intensity measurements yielded 114±14 cm?1 for C-C torsional mode and 239±20 cm?1 for the in-plane bending mode. The dipole moment was determined asμa = 1.27±0.01 D, μb = 1.67±0.02 D, and μtot = 2.10±0.02 D, while the 14N quadrupole coupling constants were found to be χaa = 1.6±0.2 MHz, χbb = 1.6±0.2 MHz and χcc = ?3.2±0.3 MHz.  相似文献   

3.
Microwave spectra of CHO-COOH and CHO-COOD are reported. The molecule has a planar equilibrium conformation with the two carbonyl groups trans to each other. A weak five-member intramolecular hydrogen bond is formed between the hydroxyl proton of the carboxyl group and the oxygen atom of the carbonyl group thus stabilizing the trans planar form. Other conformations having a statistical weight of 1 (cis and trans) are at least 1.3 kcal mol?1 less stable, and rotamers with a statistical weight of 2 (e.g., gauche and skew) have at least 1.7 kcal mol?1 higher energy. Four vibrationally excited states of CHO-COOH have been analyzed and relative intensity measurements yielded 167 ± 12 cm?1 for the C-C torsional mode and 288 ± 26 cm?1 for the lowest in-plane bending mode. The dipole moment was determined to be μa = 1.85 ± 0.03 D, μb = 0.20 ± 0.10 D, and μtot = 1.86 ± 0.04 D. A seven-parameter centrifugal distortion analysis has been carried out for the ground vibrational state of CHO-COOD and for the ground and three vibrationally excited states of CHO-COOH.  相似文献   

4.
Microwave spectra of C4H3NH-CHO, C4H3ND-CHO, and C4H3NH-CH18O are reported. The stable form of the molecule is demonstrated to be planar with the N-H and C-O bonds in a cis conformation. Other forms of the molecule are at least 1 kcal mol?1 less stable. The H(1) · O distance is 2.592±0.006 Å. Six vibrationally excited states were attributed to the C-C torsional mode, the symmetrical, and the antisymmetrical aldehyde group deformation vibrations. Relative intensity measurements yielded 151±11 cm?1, for the first frequency, 210±17 cm?1 for the second, and 270±38 cm?1 for the last mode. The dipole moment was determined to be μa = 2.47 ±0.02 D, μb = 0.16±0.06 D, and μtot = 2.48 ±0.02 D, respectively.  相似文献   

5.
Microwave spectra of ethylmethylether and its eleven isotopically substituted species were measured. The rs structure of the trans isomer was determined from the observed moments of inertia. Structural parameters of this isomer were roughly equal to those of the reported rs structure for dimethylether and diethylether. The CH2-O bond length was definitely shorter by about 0.01 Å than the CH3-O bond length and the C-C bond length was nearly equal to those of ethylchloride and bromide. The OCH3 group tilted by about 2° 13' towards lone pair electrons of the oxygen atom while no significant tilt angle was found for the CH3C group.Dipole moments of the trans isomer for the normal and two deuterated species were determined by Stark-effect measurements. For the normal species, the dipole moment was μa = 0.146 ± 0.022 D,μb = 1.165 ± 0.020 D and μtotal=1.174 ± 0.022 D making an angle of 7° 5' ± 32' with the b inertial axis. Direction of the dipole moment in the molecule was discussed.From splittings of the observed spectra, barriers to internal rotations of two CH3 groups were obtained in the one-top approximation. They were 2702 ± 7 and 3300 ± 25 cal mol?1 for the OCH3 and CH3C groups, respectively, from the analysis of splittings in the first excited CH3 torsional states. The coupling effects among two tops and the skeletal torsion were briefly discussed.  相似文献   

6.
Microwave spectra of CH3OCH2COOH and CH3OCH2COOD are reported. One conformation has been assigned. This form of the molecule has a planar HCOCCOOH skeleton with four out-of-plane hydrogens. A weak five-membered intramolecular hydrogen bond is formed between the hydroxyl proton and the ether oxygen thus stabilizing the planar form. Absolute intensity measurements and arguments based on a few reasonable assumptions have been used to show that the assigned rotamer is present at concentrations amounting to between 10 and 30 per cent of the total. Other forms are not identified. Seven vibrationally excited states were assigned and attributed to the three lowest torsional modes. The dipole moment was determined to be μa = 4.72±0.04 D, μb = 0.15±0.02 D, and μtotal = 4.72±0.04 D.  相似文献   

7.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid fluoroacetone (1-fluoro-2-propanone), CH2FC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in the cis (fluorine atom oriented cis to the methyl group) conformation in the vapor but for the liquid a second conformer having a trans orientation (fluorine atom oriented trans to the methyl group) is present. From a study of the Raman spectrum of the liquid at variable temperatures the trans conformation has been determined to be more stable than the cis form by 416 ± 54 cm−1 (1.19 ± 0.15 kcal mol−1) and is the only conformation present in the spectrum of the annealed solid. The asymmetric torsional fundamental for the more stable cis conformer has been observed in the far infrared spectrum of the gas at 69.6 cm−1 with six accompanying hot band transitions proceeding to lower frequency. The corresponding mode for the high energy trans conformer is extensively overlapped but is distinguishable at ∼65 cm−1. From these data the asymmetric torsional potential function governing internal rotation about the CC bond has been determined and the potential coefficients are: V1 = 675 ± 2, V2 = 991 ± 5, V3 = 74 ± 1 and V4 = 54 ± 2 cm−1. The cis to trans and trans to cis barriers are 1332 ± 5 and 731 ± 5 cm−1, respectively, with an enthalpy difference of 601 ± 8 cm−1 (1.72 ± 0.02 kcal mol−1). From ab initio calculations at the 3-21G and 6-31G* basis set levels optimized geometries for both the cis and trans conformers have been obtained and the potential surface governing internal rotation of the asymmetric top determined. The observed vibrational frequencies with their assignments for both the cis and trans conformers are compared to those from the ab initio calculations. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

8.
The microwave spectra of 13CH2OH-CHO, CH2OH-13CHO, and CH2OH-CH18O are reported and have been used in combination with previously published data on other monosubstituted glycolaldehydes to determine the substitution structure of the molecule as r(CO) = 1.209 Å, r(C-O) = 1.437 Å, r(C-C) = 1.499 Å, r(O-H) = 1.051 Å, r(C-Hald) = 1.102 Å, r(C-Halc) = 1.093 Å, r(O β H) = 2.007 Å, r(O β O) = 2.697 Å, ∠(C-CO) = 122°44', ∠(C-C-Hald) = 115°16', ∠(C-C-O) = 111°28', ∠(C-O-H) = 101°34', ∠(C-C-Halc) = 109°13', ∠(H-C-H) = 107°34', ∠(O-H β O) = 120°33', ∠(H β OC) = 83°41', and ∠(O-H, C0) = 24°14'. The intramolecular hydrogen bond and the other structural parameters are discussed and compared to related molecules. The dipole moment is redetermined to be μa = 0.262 ±0.002 D, μb = 2.33 ± 0.01 D, and μtot = 2.34 ± 0.01 D. Relative intensity measurements yielded 195 ± 30 cm?1 for the C-C torsional fundamental and 260±40 cm?1 for the lowest in-plane skeletal bending mode. Computations performed by the CNDO/2 method correctly predict the observed cis hydrogen-bonded conformer to be the energetically favoured one and in addition yield some indication of the existence of at least two other non-hydrogen-bonded forms of higher energy.  相似文献   

9.
The microwave spectrum of methylpropargyl ether, CH3OCH2CCH, has been investigated in the 11.9–26.5 GHz region. Only the gauche rotamer with a dihedral angle of 68° ± 2° from the syn position was assigned. Other forms are not present in concentrations exceeding 10 % of the total. The barrier to internal rotation of the methyl group was determined to be 2512 ± 75 cal mol?1. The dipole moment components are μa = 0.290 ± 0.003 D, μb = 0.505 ± 0.012 D, and μc = 1.016 ± 0.003 D. The total dipole moment is 1.171 ± 0.013 D. Extensive centrifugal distortion analyses have been carried out for the ground as well as for two vibrationally excited states. For the ground state, transitions up to J = 77 were assigned and a large centrifugal distortion exceeding 9 GHz enabled the determination of accurate quartic and significant sextic distortion coefficients.  相似文献   

10.
The microwave spectrum of isopropyl cyanide, (CH3)2CHCN, has been recorded from 26.5 to 40.0 GHz. Both A- and C-type transitions were observed. The R-branch assignments have been made for the ground and three different excited states. The following structural parameters were obtained: r(C-CN) = 1.501 Å, ∠CCC = 113.8°, and an angle between the CCC plane and the CN bond of 53.8° with reasonable assumptions made for the structural parameters for the isopropyl moiety and the nitrile bond. The dipole moment components were determined to be μa = 4.05±0.02, μc= 1.4 ± 0.2 and μt = 4.29 ±0.10 D. The dipole moment of t-butyl cyanide has been re-measured and found to have a value of4.34±0.04 D. From the relative intensities of the excited state lines, the two torsional modes were found to have frequencies of 200 ±20 and 249 ±10 cm?1 which gave a periodic barrier to internal rotation of 3.3 kcal mole?1.  相似文献   

11.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

12.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid chloroacetone (1-chloro-2-propanone), CH2ClC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in a gauche conformation having a “near cis” structure of C1 symmetry (dih ClCCO=142°C) in the vapor but for the liquid a second conformer having a trans structure (chlorine atom oriented trans to the methyl group) with Cs point group symmetry is present. From a study of the Raman spectrum of the liquid at variable temperatures, the trans conformation has been determined to be more stable than the gauche form by 1042±203 cm−1 (2.98±0.6 kcal mol−1 and is the only conformer present in the spectrum of the annealed solid. From ab initio calculations at the 3-21G* and 6-31G* basis set levels optimized geometries for both the gauche and trans conformers have been obtained and the potential surfaces governing internal rotation of the symmetric and asymmetric rotors have been obtained. The observed vibrational frequencies and assignments to the fundamental vibrations for both the gauche and trans conformers are compared to those calculated with the 3-21G* basis set. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

13.
The crystal and molecular structure of (±)-2S-2-(2-chlorophenyl)-3-acetyl-1,3-oxazolidine was determined by X-ray diffraction analysis. Orthorhombic crystal with unit cell parameters a = 6.7419(8) Å, b = 10.3797(12) Å, c = 14.9233(18) Å; space group P212121, Z = 4, ρ calc = 1.436 g/cm3, composition C11H12ClNO2. The deviation of the chlorine atom from the mean square plane of the phenyl cycle is ?0.010(5) Å. The five-membered oxazolidine cycle has an envelope conformation, which is typical for this class of compounds; the cycle is rotated at the C-C bond with respect to the phenyl fragment (the dihedral angle is 79.7(1)°). The spatial structure of the C2 chiral center lying in the plane of the 2-chlorophenyl fragment may be described as a distorted tetrahedron with an S configuration of the sp 3 hybridized carbon atom. Analysis of torsion angles and deviation of the nitrogen atom from the surrounding three-angle plane by ?0.017(3) Å allows one to speak about a tendency toward a pyramidal structure for the trisubstituted nitrogen atom. The 3D crystal structure is formed by intermolecular hydrogen bonds of C-H...O type and a strong intermolecular contact of 3.164(3) Å between the chlorine atom and the carbonyl oxygen of the acyl group.  相似文献   

14.
The microwave spectrum of CH3CH(OH)CH2NH2 has been investigated in the 26.5–39.7 GHz region. One rotamer with an intramolecular hydrogen bond formed between hydroxyl and ammo groups was assigned. This conformation is also characterized by having the methyl group anti to the amino group. Other forms, if they exist, must be at least 1 kcal mole?1 less stable. Four vibrationally excited states belonging to three different normal modes were assigned and the barrier to internal rotation of the methyl group was found to be 3173 ± 100 cal mole?1.  相似文献   

15.
Microwave spectra of CH18 OCOOH, CHOC18 OOH, CHOCO18 OH, 13 CHOCOOH and CHO13 COOH are reported and have been used in combination with data on CHOCOOH and CHOCOOD to determine the molecular structure as r(C=O)ald. = 1.174 ± 0.006 Å, r(C=O)acid = 1.203 ±0.006 Å, r(C—O) = 1.313 ± 0.010 Å, r(C—C) = 1.535 ± 0.005 Å, r(O—H) = 0.948 ± 0.004 Å, r(C—H) = 1.104 ±0.010 Å, ald. = 123.7 ± 0.4<, 相似文献   

16.
The microwave spectrum of propionyl chloride has been investigated in the region 18.0–40.0 GHz, and transitions due to a cis conformer have been assigned. This form has a heavy atom planar configuration and the methyl group and the carbonyl oxygen atom are cis to each other. Using the substitution structures of propionic acid and acetyl chloride as molecular models for the propionyl chloride molecule, good agreement is found between observed and calculateò effective rotational constants. For the 35Cl species satellite spectra assigned to the first four excited states of the C-C torsional mode have been observed together with the first excited state of the methyl torsional mode. The ground state spectrum has also been assigned for the 37Cl species. Relative intensity measurements yielded the lowest C-C torsional vibration frequency of 86 ± 10 cm?1. The CH3 internal rotation frequency was found to be 197 cm?1. Nuclear quadrupole coupling constants were determined for the ground state of the 35Cl and 37Cl species. From observed A-E splittings of bQ-branch transitions of the first excited state of the methyl torsional mode a barrier to internal rotation was estimated to be V3 = 2480 ± 40 cal mol?1 (867 ± 14 cm?1).  相似文献   

17.
By X-ray diffraction the crystal and molecular structure of iodoprotatrane (tris(2-hydroxyethyl)ammonium iodide I[HN(CH2CH2OH)3]+ (IP) at 120 K and 293 K is determined. The IP cation, as in all protatranes, has the endo conformation. The N-H bond is surrounded by three CH2CH2OH groups. The stability of this configuration is explained by the intramolecular trifurcated inductive interaction with three oxygen atoms through the space of the nitrogen atom. In the IP crystal packing, each iodine anion is linked by three strong OH...I (2.63 Å) and three weak I...H (3.13 Å) hydrogen bonds with six cations from the CH2N group. This indicates a greater nucleophilicity of the iodine atom.  相似文献   

18.
Smog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of CH2FOCH2F in 700 Torr of N2/O2 at 296 K. Relative rate techniques were used to measure k(Cl + CH2FOCH2F) = (4.6 ± 0.7) × 10?13 and k(Cl + CH2FOC(O)F) = (2.9 ± 0.8) × 10?15 (in units of cm3 molecule?1 s?1). Three competing fates for alkoxy radical CH2FOCHFO· formed in the self‐reaction of the corresponding peroxy radicals were identified. In 1 atm of air at 296 K, 48 ± 3% of CH2FOCHFO· radicals decompose via C? O bond scission, 21 ± 4% react with O2, and 31 ± 4% undergo hydrogen atom elimination. Chemical activation effects were observed for CH2FOCHFO· radicals formed in the CH2FOCHFOO· + NO reaction. Infrared spectra of CH2FOC(O)F and FC(O)OC(O)F, which are produced during the Cl atom initiated oxidation of CH2FOCH2F, are presented. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 139–147, 2002; DOI 10.1002/kin.10038  相似文献   

19.
The Crystal Structure of Trimethyltin Methanesulfinate, (CH3)3SnO2SCH3 Trimethyltin methanesulfinate, (CH3)3SnO2SCH3 crystallizes orthorhombie in the space group A2122. The lattice constants are: a = 7.98 ± 0.01, b = 12.59 ± 0.02 and c = 17.83 ± 0.02 Å Within the crystal structure the Sn atoms are linked together via bridging RSO2 groups to form a helical chain along [l00]. Each Sn atom is surrounded by three C and two 0 atoms in a trigonal bipyramidal arrangement. The Sn? C distances are in the range from 2.09 to 2.18 Å the Sn? 0 distance amounts to 2.23 Å.  相似文献   

20.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号