首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The pure rotational spectrum of the nerve agent Soman has been recorded using a pulsed-molecular-beam Fourier-transform microwave spectrometer. The spectrum consists of transitions from two different isomers. The two distinguishable isomers are likely the [SS] (or [RR]) and the [RS] (or [SR]) diastereomers that result from the two chiral centers in the molecule. The rotational constants determined for the A internal rotor states of the [SS, RR] and [RS, SR] isomers are A=1645.39765(9) MHz, B=591.97752(3) MHz, and C=547.58168(3) MHz, and A=1635.0580(1), B=600.14889(6), and C=556.45840(6) MHz, respectively, where type A, k=1 or 1σ standard uncertainties are given. Structural assignments of the diastereomers were made based on comparisons of the calculated electric dipole moments at the MP2/6-311G level of theory with the observed selection rules. Many of the rotational transitions are split into doublets and correspond to the A- and E-state transitions arising from internal rotation of the methyl top attached to the phosphorus atom. These splittings have been used to obtain the V3 barriers of the methyl groups for both diastereomers. This work is part of an ongoing project aimed at generating a spectral database of chemical agents and related families of compounds.  相似文献   

2.
The microwave spectrum of n-propyl isocyanide has revealed the existence of two rotational isomers, trans (methyl trans to the isocyanide substituent), and gauche. Plausible structures have been fitted to the data, giving the gauche dihedral angle as 119° ± 2° from the trans position. Stark effect measurements have yielded dipole moments for the two rotamers: μtrans = 4.16 ± 0.02 D and μgauche = 4.10 ± 0.09 D. The rotational constants of the trans form are A = 23 700 ± 100, B = 2407.632 ± 0.020, and C = 2278.853 ± 0.030 MHz, and those of the gauche form are A = 10 208.983 ± 0.030, B = 3479.219 ± 0.015, and C = 2859.981 ± 0.015 MHz. It has been found from relative intensity measurements that the gauche ground state is slightly more stable than the trans ground state, with an energy difference of 99 ± 45 cm?1. Several vibrationally excited states have been assigned to the torsional motion around the central carbon-carbon bond, the CNC bending motion, and the methyl internal rotation. The torsional vibration frequency is 114 ± 20 cm?1 in the trans form and 123 ± 20 cm?1 in the gauche form. A four-term potential function for internal rotation about the central CC bond has been determined.  相似文献   

3.
The microwave spectra of SiH3PD2 have been recorded in the range 26.5–40.0 GHz. Both a- and c-type transitions were observed and assigned. The rigid rotor rotational constants were determined to be A = 37589.06 ± 0.11, B = 5315.70 ± 0.02, and C = 5258.70 ± 0.02 MHz. The barrier to internal rotation has been calculated from the A-E splittings to be 1512 ± 26 cal/mole. The dipole moment components of |μa| = 0.22 ± 0.01, |μc| = 0.56 ± 0.01, and |μt| = 0.60 ± 0.01 D were determined from the Stark effect. By using previously determined microwave data for SiH3PH2, several structural parameters have been calculated and their values are compared to similar ones in other compounds. The Raman (0–2500 cm?1) spectra of gaseous, liquid, and solid SiH3PH2 and gaseous SiH3PD2 have been recorded and interpreted in detail on the basis of Cs molecular symmetry.  相似文献   

4.
The rotational spectrum of the normal isotopic species of the HCF3-CO2 weakly bound complex has been measured by Fourier-transform microwave (FTMW) spectroscopy. All transitions are split into A and E states by internal rotation of the trifluoromethane subunit. A global fit of these states gives rotational constants that are consistent with a structure predicted by an MP2/6-311++G(2d,2p) ab initio calculation in which the axes of the monomers are coplanar, with the hydrogen atom of the trifluoromethane angled toward one of the oxygen atoms of the CO2. Measured dipole moment components (μa = 0.431(6) D, μb = 0, μc = 1.436(6) D, μtotal = 1.499(6) D) confirm the ab initio prediction of an ac plane of symmetry; however, the very near-prolate nature of the complex (κ = −0.997), combined with the relatively high barrier to internal rotation (∼30 cm−1) leads to asymmetry splittings and internal rotation splittings of similar magnitude, resulting in the observation of dipole forbidden b-type E-state transitions in addition to the expected a- and c-type lines. Although this effect has been observed previously in several monomer spectra, this appears to be one of few examples for a weakly bound complex.  相似文献   

5.
The 000-000 and 310 bands of the 775-nm electronic transition of YC22A1←X?2A1) have been studied at high resolution, using the laser-induced fluorescence from a supersonic jet expansion. Three types of experiment have been carried out. First, the complete rotational and hyperfine structures of the two bands were recorded. To measure the small asymmetry splittings in the K=2 levels of the X?2A1 state, portions of the b-type 310 band were then recorded in the presence of a weak static electric field. Finally, a number of pure rotational transitions between the K=0 levels of the ground state were recorded by pump/probe microwave optical double resonance. A few small rotational perturbations occur in the upper electronic state but, omitting the perturbed lines, the combined data sets could be modeled using an effective Hamiltonian operator appropriate for the rotation, electron spin, and hyperfine structure of a rigid asymmetric top molecule. The molecule is confirmed as being “T-shaped,” where the Y atom is bonded to the side of a C2 group; the rotational constants determined are for the Ã2A1, 31 level, A=1.76128, B=0.189949, C=0.170056 cm−1, and for the X?2A1, v=0 level, A=1.742731, B=0.201947, C=0.181285 cm−1. Allowing for electron orbital corrections to the rotational constants, the geometrical structures are found to be Ã2A1 state, r (Y-C)=2.2795 Å, r (C-C)=1.2630 Å, ∠C-Y-C=32.17°; X?2A1 state, r (Y-C)=2.1946 Å, r (C-C)=1.2697 Å, ∠C-Y-C=33.63°. A molecular orbital diagram is given for the states of YC2 and the interpretation of the electron spin and hyperfine parameters is discussed.  相似文献   

6.
Microwave spectra have been observed and assigned for the axial and equatorial conformations of 4-cyanocyclopentene. For the axial species the rotational constants in megahertz are A = 5095.77, B = 2185.81, and C = 1936.50; for the equatorial species the values are A = 6762.66, B = 1916.72, and C = 1590.60. Dipole moment measurements yielded |μa| = 3.48 D and |μc| = 2.51 D for the axial form and |μa| = 3.85 D and |μc| = 1.10 D for the equatorial form. Relative intensity measurements showed the equatorial conformer to be 400 ± 60 cal mole?1 lower in energy. Several sets of vibrational satellites were observed and natural abundance C13 spectra were obtained for the equatorial conformer.  相似文献   

7.
The microwave spectra of 3-butyn-1-ol, in both the normal and deuterated HCCCH2CH2OD, species, have been assigned and one stable form of the molecule has been found to be an intramolecularly hydrogen bonded gauche form similar to the one found for the 2-haloethanols. The rotational constants for the ground vibrational state are (in MHz) as follows. HCCCH2CH2OH: A = 10438.35, B = 3385.87, C = 2760.54; HCCCH2CH2OD: A = 9998.35, B = 3378.14, C = 2723.79. Stark effect measurements yielded dipole moment components of (in D): μa = 0.91, μb = 0.85, μc = 0.60, and μtotal = 1.38. Assignments have also been made for two excited torsional states.  相似文献   

8.
The microwave spectra of o-cresol and of o-cresol-OD were assigned using molecular beam Fourier transform microwave (MB-FTMW) spectrometers in the frequency range of 3-40 GHz. Two conformers of o-cresol were measured where the hydroxy group is syn with respect to the methyl group in one case and anti in the other. The transitions of both conformers were split due to internal rotation of the methyl group. For syn-o-cresol we found the rotational constants A=3249.45242(18) MHz, B=2202.02546(18) MHz, C=1323.66277(16) MHz, and the barrier to internal rotation of the methyl group V3=7.912(46) kJ mol−1. In the case of anti-o-cresol A=3273.80084(18) MHz, B=2196.26747(18) MHz, C=1325.36424(22) MHz, and V3=4.4256(14) kJ mol−1 was obtained. Moreover we were able to determine the quartic centrifugal distortion constants, the angle between the internal rotor axes, and the inertial a axes, and, for the deuterated species, additionally the deuterium nuclear quadrupole coupling constants.  相似文献   

9.
The microwave spectra of two isotopic species of thioacetic acid, CH3COSH and CH3COSD, have been studied. Using the principal axis method (PAM), including terms through n = 6 in the perturbation series and the denominator correction, the spectra were analyzed and 45 lines for CH3COSH and 40 lines for CH3COSD were assigned. The parameters obtained by the least-squares analysis are A = 9913.29 ± 0.56 MHz, B = 4923.11 ± 0.23 MHz, C = 3354.60 ± 0.24 MHz, θ = 57.080 ± 0.030°, s = 6.2980 ± 0.0012, and Iα = 3.198 ± 0.020 amuA?2 for CH3COSH, and A = 9662.80 ± 0.78 MHz, B = 4810.74 ± 0.26 MHz, C = 3273.92 ± 0.18 MHz, θ = 55.097 ± 0.024°, s = 5.9742 ± 0.0016, and Iα = 3.171 ± 0.020 amuA?2 for CH3COSD. The barrier to internal rotation of the methyl group is V3 = 222.6 ± 1.4 cal/mole for CH3COSH and V3 = 212.9 ± 1.4 cal/mole for CH3COSD. The Stark effect measurements of A species transitions for CH3COSH led to the dipole moment μ = 1.821 ± 0.013 D with the components μa = 0.191 ± 0.010 D and μb = 1.811 ± 0.013 D.  相似文献   

10.
Microwave spectra were observed and analyzed for 2-aminoethanethiol and 2-chloroethanethiol. The amino compound exists in two gauche rotameric conformations, one exhibiting an intramolecular SH?N hydrogen bond. The hydrogen-bonded conformer lies higher in energy by 274 ± 90 cal mole?1 and has the following rotational constants (in MHz): A = 12 040.1 ± 11.3, B = 3352.24 ± 0.03, and C = 2881.99 ± 0.03. For the non-hydrogen-bonded conformer the rotational constants (in MHz) are A = 11 929.9 ± 10.2, B = 3395.01 ± 0.03, and C = 2877.82 ± 0.03. Dipole moment measurements for the H-bond conformer led to μa = 2.68 D, μb = 0.88 D, and μc = 0.37 D, while for the non-H-bond form the values are μa = 1.51 D, μb = 0.0 D, and μc = 0.62 D. In the case of chloroethanethiol, the only assigned spectral lines were the unresolved JJ + 1 a-type bands of a trans conformation. For this molecule the combination rotational constant B + C has the value 2955.17 ± 0.02 MHz for the 35Cl species and 2879.73 ± 0.02 MHz for the 37Cl species.  相似文献   

11.
The ν5 band of 12CD3F was studied using coincidences with the 9.4-μm band of the 12C16O2 laser and the 9.25-μm band of the 12C18O2 laser. The resonances were analyzed together with the infrared spectra and recent microwave results to give the following vibration-rotation parameters and dipole moment in the ν5 state: ν0 = 1072.35093 (11) cm?1; B = 0.681137 (4) cm?1; A5-A0 = ?0.01437 (3) cm?1; z = ?0.81453 (3) cm?1; μν5 = 1.8751 (25) D. The parameters should be useful in assigning some near millimeter laser lines in CD3F.  相似文献   

12.
The microwave spectrum of ethyl cyanoformate displays a-type band spectra from three nearly prolate conformers. High-resolution spectra of the two more stable species have been assigned. One form, designated extended, has rotational constants A″ = 6453.3(4) MHz, B″ = 1500.47(6) MHz, C″ = 1236.36(6) MHz, which are consistent with a syn-anti [τ1 (OCOC) = 0°, τ2 (COCC) = 180°] structure. The second form, labeled compact, has rotational constants A″ = 6787.8(7) MHz, B″ = 1549.38(8) MHz, C″ = 1406.80(8) MHz, which are consistent with a syn-gauche [τ1 (OCOC) = 0°, τ2 (COCC) ~ 90°] structure. The extended form is marginally more stable, ΔE = 55 ± 27 cm?1. The extended conformer has dipole moment components μa = 4.44(7), μb ~ 0 D and the compact conformer has dipole moment components μa = 4.25(7), μb = 0, μc = 1.08(23) D. The third conformer (relative energy 600 ± 140 cm?1) has the most intense band series even at ?63°C. the bands of this conformer are unresolvable into individual rotational transitions.  相似文献   

13.
Microwave spectra of 2-propaneselenol and its deuterated species were measured and assigned for the gauche and trans isomers. The double minimum splittings of the gauche isomers were directly observed from b-type transitions, which were assigned with the aid of a double resonance technique. Rotational constants and torsional splitting of the gauche isomer of the parent species were determined to be A = 7802.50 ± 0.75, B = 2847.68 ± 0.04, C = 2242.03 ± 0.03, ΔA = ?2.52 ± 0.74, ΔB = 0.02 ± 0.05, ΔC = ?0.34 ± 0.03, and Δν = 368.91 ± 0.94 MHz, where ΔA, and ΔB, and ΔC are the differences of the rotational constants between the (+) and (?) states. From the torsional splittings and the energy differences of the two isomers of the parent and SeD species, Fourier coefficients of the selenol internal rotation potential function were determined to be V2 = ?88 ± 15, V3 = 1543 ± 29 cal/mole on the assumption of V1 = 0. Dipole moments and their components were also obtained for the two isomers.  相似文献   

14.
The microwave rotational spectrum of the unstable species thioacetaldehyde, CH3CHS, has been studied in a flow pyrolysis system. Eight isotopic variants have been studied allowing an accurate substitution structure to be derived. Most of the spectral lines show splittings due to internal rotation, analysis of which has allowed a barrier study to be made. For the torsional ground state of the most abundant species, V3 = 1572 ± 30 cal/mole or 375.7 ± 7 J/mole. The dipole moment is μ = 2.33 ± 0.02 D with components μA = 2.26 ± 0.02 and μB = 0.56 ± 0.01 D.  相似文献   

15.
From the microwave spectrum of dimethylketene which has been recorded from 8 to 37 GHz, the following rotational constants were derived: A = 8 267.832 ± 0.8, B = 3 884.101 ± 0.03, C = 2 728.826 + 0.03 MHz. The dipole moment is μa = 1.94 ± 0.01 D. Substitution coordinates for all methyl group atoms have been obtained by investigating the spectra of six isotopic species of the molecule. The potential barrier V3 hindering internal rotation of the methyl tops has been fitted to the multiplet width of a number of high-J ground state aQ-transitions which were observed as triplets. V3 is 2065 cal/mole, keeping fixed Iα = 3.132 amu Å2 and angle (methyl-top to a-axis) = 58.94° as obtained from the partial substitution studies.  相似文献   

16.
The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p1. For liquids the second-order elastic constants are C11 = A + p1, C12 = A − p1, and the third-order constants are C111 = −(B + 5A + 3p1), C112 = −(B + A − p1), and C123 = A − B − p1, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second-order constants are C11 = p1γ + p1, C12 = p1γ − p1, and the third-order constants are C111 = −p1(γ2 + 4γ + 3), C112 = −p1(γ2 − 1), and C123 = −p1 (γ2 − 2γ + 1), where γ is the ratio of specific heats. The inequality of C11 and C12 results in a nonzero shear constant C44 = (1/2)(C11 − C12) = p1 for both liquids and gases. For water at standard temperature and pressure the ratio of terms p1/A contributing to the second-order constants is approximately 4.3 × 10−5. For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material ‘nonlinearity parameters’ associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids.  相似文献   

17.
The avoided-crossing molecular-beam electric-resonance technique was applied to methyl silane in the ground torsional state. A new type of anticrossing is introduced which breaks the torsional symmetry and obeys the selection rules ΔJ = 0, K = +1 /a3 ?1. For these “barrier” anticrossings, the values of the crossing fields Ec yield directly the internal rotation splittings; the Ec are independent of the difference (A-B) in the rotational constants. Such anticrossings were observed for J from 1 to 6. Studies were also conducted of several “rotational” anticrossings (J, K) = (1, ±1) /a3 (2, 0) for which Ec does depend on (A-B). The normal rotational transition (J, K) = (1, 0) ← (0, 0) was observed in the ground torsional state using the molecular beam spectrometer. The present data on CH328SiH3 were combined with Hirota's microwave spectra and analyzed with the torsion-rotation Hamiltonian including all quartic centrifugal distortion terms. In addition to evaluating B and several distortion constants, determinations were made of the moment of inertia of the methyl top Iα = 3.165(5) amu-Å2, the effective rotational constant Aeff = 56 189.449(32) MHz, and the effective height of the threefold barrier to internal rotation V3eff = 592.3359(73) cm?1. The correlations leading to these two effective constants are discussed and the true values of A and V3 are determined within certain approximations. For the isotopic species CH330SiH3, barrier and rotational anticrossings were observed. The isotopic changes in A and V3 were determined, as well as an upper limit to the corresponding change in Iα.  相似文献   

18.
A detailed rotational analysis of the microwave spectrum between 26.5 and 40 GHz of phosphaethene, CH2PH, has been carried out. This molecule is the simplest member of a new class of unstable molecules—the phosphaalkenes. The species can be produced by pyrolysis of (CH3)2PH, CH3PH2 and also somewhat more efficiently from Si(CH3)3CH2PH2. Full first-order centrifugal distortion analyses have been carried out for both 12CH231PH and 12CH231PD yielding: A0 = 138 503.20(21), B0 = 16 418.105(26), and C0 = 14 649.084(28) MHz for 12CH231PH. The 101-000μA lines have also been detected for 13CH2PH, cis-CDHPH and trans-CHDPH. These data have enabled an accurate structure determination to be carried out which indicates: r(HcC) = 1.09 ± 0.015 A?, ∠(HcCP) = 124.4 ± 0.8°; r(HtC) = 1.09 ± 0.015 A?, ∠(HtCP) = 118.4 ± 1.2°; r(CP) = 1.673 ± 0.002 A?, ∠(HCH) = 117.2 ± 1.2°; r(PH) = 1.420 ± 0.006 A?, ∠(CPH) = 97.4 ± 0.4°. The dipole moment components have been determined as μA = 0.731 (2), μB = 0.470 (3), μ = 0.869 (3) D for CH2PH; μA = 0.710 (2), μB = 0.509 (10), μ = 0.874 (7) D for CH2PD.  相似文献   

19.
The rotational spectrum of α-angelicalactone has been analyzed in the frequency range 18.0–40.0 GHz. The internal rotation barrier of the methyl group has been determined in the ground and four vibrationally excited states from the A-E splittings. The results indicate a possible rotational between the methyl torsion and the ring puckering mode. The ground state rotational parameters are consistent with a planar ring skeleton. The dipole moment components obtained from Stark displacements are μa = 3.16(1) D and μb = 2.59(2) D with a total value of 4.08(2) D.  相似文献   

20.
The analysis of the microwave spectrum of 3,3-difluoropropene has confirmed the existence of two rotational isomers, cis and gauche. The rotational constants in the ground vibrational state are A = 9126.08 MHz, B = 3722.120 MHz, and C = 2946.598 MHz for the cis form and A = 8901.64 MHz, B = 4192.759 MHz, and C = 3107.718 MHz for the gauche form. The dipole moment and its components along the principal axes of intertia are μa = 2.369 ± 0.015 D, μc = 0.70 ± 0.03 D, and μt = 2.47 ± 0.03 D for the cis form and μa = 1.535 ± 0.015 D, μb = 0.53 ± 0.04 D, μc = 1.36 ± 0.03 D, and μt = 2.12 ± 0.05 D for the gauche form. The relative intensity measurement indicates that the cis form is more stable than the gauche form by 260 ± 80 cm?1. The energy of the first excited state with respect to the ground state was found to be 63 ± 8 cm?1 for the cis form and 85 ± 10 cm?1 for the gauche form. Two Fourier coefficients of the potential function restricting the torsion around the CC bond were determined to be V1 = 266 ± 40 cm?1 and V3 = 508 ± 200 cm?1, using the available data. The potential function thus obtained is compared to a prediction model which is derived assuming additivity of the potential as a function of substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号