首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A notion referred to as the Wave Propagation Property is analyzed in the context of the nonlinear theory of one-dimensional elastic bodies. Roughly speaking, a body possesses this property if mechanical disturbances propagate with bounded speed. A uniqueness theorem is proven with the aid of the results on wave propagation.
Zusammenfassung Ein Begriff, bezeichnet als Wellenfortpflanzungseigenschaft, wird in Zusammenhang mit der nicht-linearen Theorie des eindimensionalen elastischen Körpers untersucht. Ein Körper besitzt, gross gesprochen, diese Eigenschaft, wenn sich mechanische Störungen mit beschränkter Geschwindigkeit fortpflanzen. Mit Hilfe des Ergebnisses für Wellenfortpflanzung wird ein Eindeutigkeitsatz bewiesen.
  相似文献   

3.
Wave propagation in an inhomogeneous elastic rod or slab is considered. The governing equations are written in a matrix form and transformations are sought which reduce the system to a form associated with the wave equation. Integration of the system is then immediate. It is shown that such reduction may be achieved subject to a function involving the density and elastic parameters of the material adopting certain multi-parameter forms. These parameters are available for fitting to the behaviour of a variety of inhomogeneous elastic materials. A specific initial boundary value problem is solved by utilising the present method.  相似文献   

4.
5.
6.
We investigate the propagation of elastic waves through an elastic medium submitted to an angular rotation Ω. Wave propagation is shown to be directly related to the Kibel number Ki=ω/Ω, where ω is the wave frequency. Two dispersive waves W1 and W2 are obtained which tend to the classical dilatational and shear waves, respectively, when Ki tends to infinity. Wave W1 shows a cutoff frequency ωc=Ω below which it does not propagate. The case of small angular rotation Ω is also studied. The corrections to be introduced to dilatational and shear waves are then shown to be of order O(Ki−1).  相似文献   

7.
Institute of Mechanics, Academy of Sciences of the Ukraine, Kiev. Institute of Electrowelding, Academy of Sciences of the Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 29, No. 11, pp. 47–52, November, 1993.  相似文献   

8.
The constraint of in-plane rigidity is examined within the general framework of the theory of internally constrained materials. It is shown that, for in-plane rigid materials, local strain and active stress are both defined by vectorial quantities. Representation formulae for the elastic response mapping are established in the cases of transverse isotropy and maximal symmetry, compatible with the constraint manifold. The equilibrium problem for an elastic body reinforced with parallel inextensible planes is also considered. In particular, universal solutions for bodies with maximal material symmetry are determined within the class of deformations which leave rigid every reinforcing plane.  相似文献   

9.
Certain types of structures and materials, such as engineered multi-scale systems and comminuted zones in failed ceramics, may be modeled using continuum theories incorporating additional kinematic degrees of freedom beyond the scope of classical continuum theories. If such material systems are to be subjected to high strain rate loads, such as those resulting from ballistic impact or blast, it will be necessary to develop models capable of describing transient stress wave propagation through these media. Such a model is formulated, solved, and applied to the impact between two bodies and to a two-layer bar or strip subjected to an instantaneously applied stress. Results from these examples suggest that the model parameters, and therefore constitutive properties and geometries, may be tuned to reduce and control the transmission of stress through these bodies.  相似文献   

10.
11.
12.
Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed.Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are presented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.  相似文献   

13.
14.
According to the Griffith criterion, a crack propagation occurs, provided that the derivative of the energy functional with respect to the crack length reaches some critical value. We consider a generalization of this criterion to the case of nonlinear cracks satisfying a nonpenetration condition and investigate the dependence of the shape derivative of the energy functional on the crack shape. In the paper, we find the crack shape which gives the maximal deviation of the energy functional derivative from a given critical value and, in particular, prove that this optimality problem admits a solution.  相似文献   

15.
The modulation of the optical path of the beam of a laser vibrometer in a specimen under acoustic excitation is measured at two planes, separated by a precisely known distance. The phase shift and the decrease in magnitude are used to calculate the phase velocity and attenuation, respectively. The method is demonstrated for a homogeneous specimen, and the results compare favorably with those obtained by a conventional ultrasonic technique. The method is then applied to measure specular and first diffraction-order reflection from a coplanar periodic array of particles in an elastic matrix and phase velocity spectra in a tetragonal periodic particulate composite. As expected, in a periodic composite the establishment of dispersive Floquet-type waves is observed throughout the entire periodic particulate composite.  相似文献   

16.
This paper discusses the influence of strain-hardening and of viscosity on the cylindrical elastic/viscoplastic wave-propagation. Perzyna's model is used with linear viscosity dependence, bilinear quasi-static stressstrain curve and a radial stress is assumed to be suddenly applied on the surface of a cylindrical cavity and maintained constant. It is shown by computer analysis that work-hardening and viscosity affect the results considerably and that at a certain time after the impact load is applied an elastic region appears within the viscoplastically deforming medium.  相似文献   

17.
On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables and the wave propagation problem is then transformed into two-dimensional (2D) symplectic eigenvalue problems, where the extended Wittrick-Williams algorithm is used to ensure that no phase propagation eigenvalues are missed during computation. Three typical cellular structures, square, triangle and hexagon, are introduced to illustrate the unique feature of the symplectic algorithm in higher-frequency calculation, which is due to the conserved properties of the structure-preserving symplectic algorithm. On the basis of the dispersion relations and phase constant surface analysis, the band structure is shown to be insensitive to the material type at lower frequencies, however, much more related at higher frequencies. This paper also demonstrates how the boundary conditions adopted in the finite element modeling process and the structures' configurations affect the band structures. The hexagonal cells are demonstrated to be more efficient for sound insulation at higher frequencies, while the triangular cells are preferred at lower frequencies. No complete band gaps are observed for the square cells with fixed-end boundary conditions. The analysis of phase constant surfaces guides the design of 2D cellular structures where waves at certain frequencies do not propagate in specified directions. The findings from the present study will provide invaluable guidelines for the future application of cellular structures in sound insulation.  相似文献   

18.
The dispersive behaviour of time-harmonic waves propagating along a principal direction in a perfectly bonded pre-stressed compressible elastic bi-material laminate is considered. The dispersion relation which relates wave speed and wavenumber is obtained by formulating the incremental boundary value problem and the use of the propagator matrix technique. At the low wavenumber limit, depending on the pre-stress, both the fundamental mode and the next lowest mode may have finite phase speeds. For the higher modes which have infinite phase speeds in the low wavenumber region, an expression to determine the cut-off frequencies is obtained. At the high wavenumber limit, the phase speeds of the fundamental mode and higher modes tend to phase speeds of the surface wave, the interfacial wave or the limiting phase speed of the composite. For numerical examples, either a two-parameter compressible neo-Hookean material or a two-parameter compressible Varga material is assumed.  相似文献   

19.
20.
In the context of acoustic or elastic wave propagation, the non-periodic asymptotic homogenization method allows one to determine a smooth effective medium and equations associated with the wave propagation in a given complex elastic or acoustic medium down to a given minimum wavelength. By smoothing all discontinuities and fine scales of the original medium, the homogenization technique considerably reduces meshing difficulties as well as the numerical cost associated with the wave equation solver, while producing the same waveform as for the original medium (up to the desired accuracy). Nevertheless, finding the effective medium requires one to solve the so-called “cell problem”, which corresponds to an elasto-static equation with a finite set of distinct loadings. For general elastic or acoustic media, the cell problem is a large problem that has to be solved on the whole domain and its resolution implies the use of a finite element solver and a mesh of the fine scale medium. Even if solving the cell problem is simpler than solving the wave equation in the original medium (because it is time and source independent, based on simple tetrahedral meshes and embarrassingly parallel) it is still a challenge. In this work, we present an alternative method to the finite element approach for solving the cell problem. It is based on a well-known method designed by H. Moulinec and P. Suquet in 1998 in structural mechanics. This iterative technique relies on Green functions of a simple reference medium and extensively uses Fast Fourier Transforms. It is easy to implement, very efficient and relies on a simple regular gridding of the medium. Through examples we show that the method gives excellent results, even, under some conditions, for discontinuous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号