首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a generalized variational principle with two-field variables is derived from the Reissner principle of elasticity in the curvilinear coordinates of a revolution shell, based on which, a new kind of mixed elements with independent transverse rotations is formulated for revolution shells subjected to harmonic external loads. The resultant-stress interpolations are carefully selected so that the shear part of the element stiffness contains the Kirchhoff hypothesis for thin shells and element stiffness matrices have correct ranks. The elements are free from shear locking and spurious kinematic modes. Numerical examples show that the new elements have good generality and high accuracy for thin and moderately-thick revolution shells.  相似文献   

2.
本文从弹性力学Reissner变分原理出发推导旋转壳曲线坐标系下内分,位移的二类变量广义变分原理,依据这个原理推导一类旋转壳坐标系中具有独立横向转角的受谐和外载荷下的杂交旋转壳单元,内力模式的选用使刚度矩阵的剪切部份在薄壳情况下能反映Kirchhoff假设,并使单元刚度矩阵满秩,从而保证单元无剪切自锁和零能模式,数例证明这类单元对中厚和薄旋转壳具有良好的通用性和较高的精度。  相似文献   

3.
4.
In this paper, a nonlinear theory is given for multilayer sandwich shells undergoing small strains and moderate rotations. Then a simplified theory for the shells undergoing moderate or moderate/small rotations are obtained.  相似文献   

5.
Uniqueness results are established for solutions of secondary creep problems, including the effect of elastic strains, for a large class of domains subject to mixed boundary conditions. Two theorems are proved, one for quasistatic creep and one for dynamic.  相似文献   

6.
A mixed variational principle is derived by Hamilton’s method from the principle of minimum potential energy for thin anisotropic shells of revolution and is then used to derive a normal system of equations with complex coefficients. Discrete orthogonalization is used to solve this homogeneous system and the nonlinear system of equations that describes the precritical state of shells. A shell generated by revolving a circular arc around the axis parallel to its chord is analyzed for stability. The solution is compared with the approximate solution obtained assuming that the precritical state is membrane. It is established that the approximate problem formulation gives incorrect results for shells of negative Gaussian curvature  相似文献   

7.
For global behavioral constraints, the problem of optimal design of plates and shells is formulated by assuming the design to be dependent upon a set of design parameters. Global minimum theorems are proved for some constraints, whereas for others only local extremum conditions are derived. A possibility of constructing some numerical algorithms by using the optima-lity condition and proper variational principle is discussed. The following behavioral constraints are considered: prescribed mean compliance measurer1 as the work of surface tractions, prescribed local deflection of linearly or nonlincarly elastic structure, given set of several free frequencies, prescribed safety factor for limit load of a plastic structure, any global constraint ex pressed as a surface integral with integrand depending on generalized stresses or strains.  相似文献   

8.
A technique is proposed to solve elastoplastic deformation problems for branched shells of revolution under the action of asymmetric forces and a temperature field. The kinematic equations are derived within the framework of the linear Kirchhoff–Love theory of shells and the thermoelastic relations within the framework of the theory of small elastoplastic strains. The problem is given a variational formulation based on the virtual-displacement principle and the Fourier-series expansion of the unknown functions and loads with respect to the circumferential coordinate. The additional-load method is used to solve a nonlinear problem and the finite-elements method is used to carry out a numerical analysis. As an example, an asymmetric stress–strain analysis is performed for a cylindrical shell reinforced by a ring plate.  相似文献   

9.
From the concept of four-dimensional space and under the four kinds of time limit conditions, some general theorems for elastodynamics are developed, such as the principle of possible work action, the virtual displacement principle, the virtual stress-momentum principle, the reciprocal theorems and the related theorems of time terminal conditions derived from it. The variational principles of potential energy action and complementary energy action, the H-W principles, the H-R principles and the constitutive variational principles for elastodynamics are obtained. Hamilton's principle, Toupin's work and the formulations of Ref. [5], [17]-[24] may be regarded as some special cases of the general principles given in the paper. By considering three cases: piecewise space-time domain, piecewise space domain, piecewise time domain, the piecewise variational principles including the potential, the complementary and the mixed energy action fashions are given. Finally, the general formulation of piecewise variati  相似文献   

10.
The vibrating behaviour of thin structures is affected by prestress states. Hence, the effects of thermal prestress are important research subjects in view of ambient vibration monitoring of civil structures. The interaction between prestress, geometrically non-linear behaviour, as well as damping and its coupling with the aforementioned phenomena has to be taken into account for a comprehensive understanding of the structural behaviour. Since the literature on this subject lacks a clear procedure to derive models of thin prestressed and damped structures from 3D continuum mechanics, this paper presents a new derivation of models for thin structures accounting for generic prestress, moderate rotations and viscous damping. Although inspired by classical approaches, the proposed procedure is quite different, because of (i) the definition of a modified Hu–Washizu (H-W) functional, accounting for stress constraints associated with Lagrange multipliers, in order to derive lower-dimensional models in a convenient way; (ii) an original definition of a (mechanical and thermal) strain measure and a rotation measure enabling one to identify the main terms in the strain energy and to derive a cascade of lower-dimensional models (iii) a new definition of “strain–rotation domains” providing a clear interpretation of the classical assumptions of “small perturbations” and “small strains and moderate rotations”; (iv) the introduction of a pseudo-potential with stress constraints to account for viscous damping. The proposed procedure is applied to thin beams.  相似文献   

11.
A technique for the determination of the axisymmetric thermoviscoelastoplastic state of laminated thin shells made of a damageable material is developed. The technique is based on the kinematic equations of the theory of thin shells that account for transverse shear strains. The thermoviscoplastic equations, which describe the deformation of a shell element along paths of small curvature, are used as the constitutive equations. The equivalent stress that appears in the kinetic equations of damage and creep is determined from a failure criterion that accounts for the stress mode. The thermoviscoplastic deformation of a two-layer shell that models an element of a rocket engine nozzle is considered as an example __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 87–100, April 2008.  相似文献   

12.
The main propositions of Rabotnov’s two-layer model of a shell are given. It is shown that the Rabotnov’s functional can be obtained from the mixed variational principle of creep theory. The notion of critical time is introduced and a procedure for obtaining an explicit formula for it using a variational equation is described.  相似文献   

13.
The theory is summarized for axisymmetric prebuckling and nonsymmetric bifurcation buckling of ring-stiffened shells of revolution. The analysis is based on finite difference energy minimization in which moderately large meridional rotations, elastic-plastic effects, and primary or secondary creep are included. This theory is implemented in a computer program called BOSOR5, for the analysis of segmented and branched ring-stiffened shells of revolution of multi-material construction.Comparisons between test and theory are given for axisymmetric collapse and nonsymmetric bifurcation buckling of 69 machined ring-stiffened aluminum cylinders submitted to external hydrostatic pressure. Because most of the cylinders fail at an average stress which corresponds to the knee of the stress-strain curve, the analytical predictions are not very sensitive to modeling particulars such as nodal point density or boundary conditions. Agreement between test and theory is improved if the analytical model reflects the fact that the shell and rings intersect over finite axial lenths.  相似文献   

14.
A technique is proposed to determine the thermoviscoelastoplastic axisymmetric stress–strain state of laminated shells made of isotropic and orthotropic materials. The paper deals with processes of shell loading such that both instantaneous elastoplastic and creep strains occur in isotropic materials and elastic and creep strains in orthotropic materials. The technique is developed within the framework of the Kirchhoff–Love hypotheses for a stack of layers with the use of the equations of the geometrically nonlinear theory of shells in a quadratic approximation. The deformation of isotropic materials is described by the equations of the theory of deformation along slightly curved trajectories, while the deformation of orthotropic materials is described by Hooke's law with additional terms allowing for creep. A numerical example is given  相似文献   

15.
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.  相似文献   

16.
Energy and dissipation pseudo-potentials are employed to derive constitutive relationships, in the context of thermodynamic concepts, for the widely used Modified Cam-Clay (MCC) model for soil mechanics. A variational formulation of the MCC evolution equations is proposed in this paper. Since plastic collapse of MCC soils cannot be embedded in the classical limit analysis theory, finding the critical amplification of the load that produces plastic collapse is formulated in the form of a system of equations and inequalities. Then, a mixed minimization principle is proposed for the plastic collapse analysis of MCC soils. This principle is obtained by the application of the variational formulation for the flow law introduced in the first part of the article.  相似文献   

17.
Summary A comprehensive theory is developed for elastic thin shells and panels of arbitrary shape and load conditions, including the effect of large transverse displacements, non uniform temperature distributions and initial imperfections. A single variational principle is derived, that comprehends both equilibrium and compatibility conditions. In the Appendix an example of the application of such a principle is carried out.  相似文献   

18.
State-vector equation with damping and vibration analysis of laminates   总被引:2,自引:0,他引:2  
Based on the modified mixed Hellinger-Reissner(H-R)variational principle for elastic bodies with damping,the state-vector equation with parameters is directionally derived from the principle.A new solution for the harmonic vibration of simply supported rectangular laminates with damping is proposed by using the precise integration method and Muller method.The general solutions for the free vibration of underdamping,critical damp and overdamping of composite laminates are given simply in terms of the linear damping vibration theory.The effect of viscous damping force on the vibration of com- posite laminates is investigated through numerical examples.The state-vector equation theory and its application areas are extended.  相似文献   

19.
We propose an approach to the definition and analysis of material instabilities in rate-independent standard dissipative solids at finite strains based on finite-step-sized incremental energy minimization principles. The point of departure is a recently developed constitutive minimization principle for standard dissipative materials that optimizes a generalized incremental work function with respect to the internal variables. In an incremental setting at finite time steps this variational problem defines a quasi-hyperelastic stress potential. The existence of this potential allows to be recast a typical incremental boundary-value problem of quasi-static inelasticity into a principle of minimum incremental energy for standard dissipative solids. Mathematical existence theorems for sufficiently regular minimizers then induce a definition of the material stability of the inelastic material response in terms of the sequentially weakly lower semicontinuity of the incremental variational functional. As a consequence, the incremental material stability of standard dissipative solids may be defined in terms of the quasi-convexity or the rank-one convexity of the incremental stress potential. This global definition includes the classical local Hadamard condition but is more general. Furthermore, the variational setting opens up the possibility to analyze the post-critical development of deformation microstructures in non-stable inelastic materials based on energy relaxation methods. We outline minimization principles of quasi- and rank-one convexifications of incremental non-convex stress potentials for standard dissipative solids. The general concepts are applied to the analysis of evolving deformation microstructures in single-slip plasticity. For this canonical model problem, we outline details of the constitutive variational formulation and develop numerical and semi-analytical solution methods for a first-level rank-one convexification. A set of representative numerical investigations analyze the development of deformation microstructures in the form of rank-one laminates in single slip plasticity for homogeneous macro-deformation modes as well as inhomogeneous macroscopic boundary-value problems. The well-posedness of the relaxed variational formulation is indicated by an independence of typical finite element solutions on the mesh-size.  相似文献   

20.
An integrated mathematic model and an efficient algorithm on the dynamical behavior of homogeneous viscoelastic corrugated circular plates with shallow sinusoidal corrugations are suggested. Based on the nonlinear bending theory of thin shallow shells, a set of integro-partial differential equations governing the motion of the plates is established from extended Hamilton’s principle. The material behavior is given in terms of the Boltzmann superposition principle. The variational method is applied following an assumed spatial mode to simplify the governing equations to a nonlinear integro-differential variation of the Duffing equation in the temporal domain, which is further reduced to an autonomic system with four coupled first-order ordinary differential equation by introducing an auxiliary variable. These measurements make the numerical simulation performs easily. The classical tools of nonlinear dynamics, such as Poincaré map, phase portrait, Lyapunov exponent, and bifurcation diagrams, are illustrated. The influences of geometric and physical parameters of the plate on its dynamic characteristics are examined. The present mathematic model can easily be used to the similar problems related to other dynamical system for viscoelastic thin plates and shallow shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号