首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过原子转移自由基聚合合成了线形及三臂聚苯乙烯-b-聚2(5)-乙烯基对(间)苯二甲酸二钠嵌段共聚物,通过凝胶渗透色谱、核磁共振和热失重表征证实得到了结构明确、分散度较窄的嵌段共聚物成核剂.采用熔融共混的方法制得聚对苯二甲酸乙二酯(PET)与成核剂共混样品.采用差示扫描量热仪与一维X射线衍射仪研究了PET及添加成核剂后...  相似文献   

2.
The structural and thermal transitions for ethylene and vinyl acetate copolymer (EVA) samples irradiated by fast electrons at doses in the range of 2.5–25 Mrad were investigated by DSC and X-ray diffraction analysis. The parameters of chemical bonds in the amorphous phase of copolymer were determined. The change in the degree of crystallinity, melting temperature, and crystallite sizes before and after radiochemical modification were estimated. The obtained results were analyzed and corresponded to the physicomechanical properties of copolymers. The surface energy of copolymers before and after irradiation was defined. The strength of adhesive joints based on EVA from PET substrates and the influence of radiochemical modification of adhesive before joint formation on its strength were analyzed.  相似文献   

3.
Poly(monoitaconates) containing octyl, decyl and dodecyl groups and random monoalkylitaconate-co-vinylpyrrolidone copolymers were studied by thermogravimetric analysis. Copolymers of mono-n-octylitaconate (MOI), mono-n-decylitaconate (MDI), and mono-n-dodecylitaconate (MDoI), respectively, with N-vinyl-2-pyrrolidone (VP) of different compositions were studied by dynamic thermogravimetric analysis. The thermal stability of the copolymers depends on the structure of the monoitaconate comonomer and on the composition of the copolymer The kinetic analysis of the degradation data shows that the thermal decomposition of these copolymers can be described by several kinetic orders depending on the copolymer and on the composition. The relative thermal stability of the copolymers increases as the VP content increases and as the length of the side chain of the itaconate increases, following the same trend as the flexibility of the copolymers in solution.  相似文献   

4.
Polyester-polyamide (PET/PA) copolymers offer a wide range of possible applications where both dimensional stability and good impact resistance can be achieved from their synergism. In order to ensure these properties for long-term use, however, problems of phase separation, volume change, and chemical reequilibration on heating or aging must be identified and overcome. Wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), and thermal analysis were employed to follow the microstructure of a 70:30 PET/PA copolymer with several different processing histories as a function of heat history and both short-term and long-term aging. Heating the copolymer, as received, above the melting temperature of PET caused phase mixing. The effect of heating on crystallinity depended on starting crystallinity. Holding the copolymer at 50°C, just below the glass transition temperature of PET, caused phase separation in samples which had been annealed for 30 min at 150°C. On long-term aging samples gave evidence of phase mixing. The results indicate highly nonequilibrium structure in the material, regardless of the original processing.  相似文献   

5.
研究了对象基苯甲酸(ABA)/聚对苯二甲酸乙二酯(PET)液晶共聚酯酰胺的晶体结构,以及热性能、流变学和力学性质。广角X射线衍射研究结果表明ABA链节的引入使PET的晶态结构发生畸变,但大部分结晶衍射峰仍然存在。随着ABA含量的增加,各晶面间距基本不变,微晶尺寸显著增大,结晶度急剧降低。差示扫描量热分析和热失重结果表明共聚酯胺具有优良的热稳定性,并且随着ABA含量的增加,共聚物的热稳定性提高,共聚  相似文献   

6.
Different copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium salt (AMPS) methoxypolyethyleneglycol methacrylate (MPEG) with statistical and diblock distributions were prepared using RAFT-controlled radical polymerization. The effect of polymer architecture and monomer ratio on the adsorption behavior, electrokinetic, and stability properties of the alumina suspensions was investigated. Adsorption isotherms showed that copolymer interaction depended on both the ratio of the monomers and their distribution within the macromolecular backbone. Changes in the electrokinetic properties of the alumina suspension after addition of the copolymers were investigated by monitoring the particle zeta-potential as a function of pH. A continuous shift in the isoelectric point IEP to a more acidic value was observed and particle charges were reversed when the amount of copolymer added exceeded a critical level.  相似文献   

7.
Poly(ethylene terephthalate)/copoly(succinic anhydride/ethylene oxide) copolymers, (PET/PES copolymers) were synthesized by the transreaction between PET and PES and characterized with GPC, 1H NMR, and DSC. Most of the copolymers obtained were random copolymers. The films cast of these copolymers were transparent. The thermal, mechanical properties, and biodegradability of the copolymers obtained were studied with respect to the composition and lengths of aliphatic and aromatic units in the copolymers. In the copolymers having high PET content, the melting points, due to the PET segment, were observed by DSC measurement, although the fusion heats of the copolymers were small. The enzymatic hydrolyzability by a lipase from Rhizopus arrhizus and biodegradability by activated sludge of the copolymers decreased with an increase in PET content. When the length of succinic acid unit in the copolymer was below 2, the hydrolyzability of the copolymers decreased considerably. The tensile strengths of the cast films prepared from the copolymers synthesized by the transreaction increased with an increase in PET content, whereas, the elongations at break decreased. Their tensile strengths were half, and the elongations were double compared to those of PET homopolymer film. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4478–4489, 2000  相似文献   

8.
Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission. Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.  相似文献   

9.
Copolymer nanoparticles from aniline (AN) and 4‐sulfonic diphenylamine (SDP) were simply synthesized for the first time by an oxidative precipitation polymerization with inorganic oxidants in an acidic aqueous medium without any external emulsifier or stabilizer. The polymerization yield, intrinsic viscosity, solubility, solvatochromism, electrical conductivity, and thermal stability of the copolymers were systematically studied through changes in the AN/SDP ratio, polymerization temperature, oxidant species, monomer/oxidant ratio, and acidic medium. The molecular structure of the copolymers was characterized with elemental analysis, IR, and ultraviolet–visible spectra. The polymers exhibited very good solubility in polar solvents, water, and NH4OH, and this was mainly attributable to the presence of sulfonic acid side groups. The electrical conductivity of the copolymers increased greatly, from 6.00 × 10?4 to 2.55 × 10?1 S/cm, with increasing AN content. The size of the copolymer particles, determined by laser particle analysis and atomic force microscopy (AFM), strongly depended on the polymer state and oxidant/monomer ratio. Pure dedoped particles of the AN/SDP (50/50) copolymer at an oxidant/monomer ratio of 1/2 exhibited minimum length/diameter ratios of 62/44 and 45/30 nm by AFM and transmission electron microscopy, respectively. The copolymers showed typical four‐step weight‐loss behavior in nitrogen and air and higher thermostability in nitrogen. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3380–3394, 2004  相似文献   

10.
Glycidyl methacrylate was copolymerized with tert-butyl acrylate in bulk at 60°C using benzoyl peroxide as free radical initiator. The copolymer composition was determined by chemical analysis as well as from 13C-NMR data. The monomer reactivity ratios were calculated by using the YBR method. The number average sequence length of the copolymers was determined from 13C-NMR data and compared with those obtained from reactivity ratios. The intrinsic viscosity of the copolymers was determined in DMF, and thermal stability as well as mechanism of thermal degradation of the copolymers were evaluated.  相似文献   

11.
蓖麻油与乳酸的共聚物合成与表征   总被引:2,自引:1,他引:1  
用熔融聚合法合成了一种蓖麻油和乳酸的共聚物.以丁二酸酐作为共聚体系的引发剂和封端剂,制得端羧基共聚物P(LA-CO)-COOH.研究了反应条件对共聚物分子量的影响,通过核磁共振表征了共聚物的结构.DSC和TG研究表明,蓖麻油链段的引入破坏了聚乳酸的结晶性,提高了共聚物的热稳定性.  相似文献   

12.

The properties and structures of terephthalyl chloride (TPC) modified poly(m‐phenylene isophthalamide) (PMIA) with TPC mole content in acylchloride from 5%–15% were studied in this paper. The composition and structure of the copolymer were determined by 1H NMR. The content of TPC moiety in the molecular chain was calculated. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) were used to analysis the thermal properties of TPC modified PMIA copolymer. The results show that by introducing TPC units in the PMIA molecular chain, PMIA copolymers with better thermal properties were prepared. With the increase of TPC content, the TPC modified PMIA exhibit increasing thermal stability. The pyrolysis process of the copolymer was detected by FTIR spectra. When the copolymers were pyrolyzed to 500°C, an aryl nitrile band at 2230 cm?1 appears in the FTIR spectrum. This means that at this temperature breakage of the amide bond occurred.  相似文献   

13.
The thermal stability of PVB and five VB-MA copolymers with different compositions was studied by thermogravimetric analysis in dynamic nitrogen. The reactivity ratios of the copolymers were determined by using NMR techniques. It was found that r1(VB) = 0.5 ± 0.1 and r2(MA) = 7.3 ± 0.3. The stability of VB increases as the MA concentration in the copolymer compositions increases. Apparently, the formation of lactone and anhydride structures has a stabilizing effect. The stability imparted to the degrading copolymers by lactone and anhydride structures is insufficient to produce stability comparable to that of PMA itself.  相似文献   

14.
Five copolymer samples containing different mole fractions of methyl methacrylate (MMA) and 2-ethylhexyl methacrylate (EHMA) were prepared by bulk polymerisation at 70°C using 0.2% benzoyl peroxide as an initiator. The copolymer composition was determined by1H NMR spectroscopy. Molecular weight of copolymers was determined by gel permeation chromatography and viscosity measurements. Thermogravimetric experiments were conducted to evaluate activation energy for the degradation of copolymers. Two to four reaction stages for the weight loss were observed in the copolymers. A decrease in thermal stability was observed by an increase in EHMA content.  相似文献   

15.
Copolymer networks based on 4-vinylpyridine (4VPy)/crotonic acid (CrA)/divinylbenzene (DVB) and their N-oxide derivatives have been investigated by thermogravimetric analysis (TG) to evaluate their thermal stability in nitrogen atmosphere at fixed heating rate. Thermal stability was determined from TG curves to investigate the influence of 4VPy content and introduction of N-oxide groups. The TG and DTG curves of unmodified copolymers clearly show two thermodegradation stage and the same kinetic pathway. The decomposition temperatures do not depend on the 4VPy content. The copolymers modified by oxidation present lower thermostability than unmodified showing that the introduction of N-oxide groups modifies their kinetic pathways. A kinetic model Ozawa was used to determine the kinetic parameters. The apparent thermal decomposition activation energies (ΔEd) of the unmodified copolymer under nitrogen was higher than that in modified copolymer. Also, the characterizations of copolymer networks were done by Fourier transform infrared spectroscopy (FTIR).  相似文献   

16.
Copolymers of polyaniline and o-azidoaniline were synthesized by chemical oxidative polymerization. The copolymers were characterized by powder X-ray diffraction (XRD) and UV/Vis and FT-IR spectroscopy. Thermal activation of the azido chromophore in the copolymer caused it to react and cross-link into adjacent polymer chains. The cross-linking of the copolymers was indicated by the depletion of the azido band in the FT-IR spectrum. The effects of the cross-linking were studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and four-probe conductivity. The TGA showed that the thermal stability of the copolymers is improved due to cross-linking. However, the increased thermal stability is accompanied by a decrease in electrical conductivity due to the loss of conjugation detected by UV/Vis spectroscopy and a loss of crystallinity due to the azido substituents, which was demonstrated by XRD.  相似文献   

17.
In this paper, one-pot reaction of radical copolymerization of glycidyl methacrylate with methyl methacrylate, n-butyl acrylate and styrene under carbon dioxide atmosphere (1 atm) was employed to synthesize cyclic carbonate bearing copolymers. Obtained copolymers were characterized using 1H NMR and FTIR spectroscopy. The viscoelastic and thermal properties of the resulted copolymers were investigated using dynamic mechanical thermal analysis and thermogravimetric analysis. Copolymer composition and monomer type had a significant effect on the properties of the copolymers. An increase in cyclic carbonate (2-oxo-1,3-dioxolane-4-yl-methyl methacrylate) content in the copolymer composition led to an increase in glass transition temperature, storage modulus and loss tangent as well as the thermal stability of the copolymers.  相似文献   

18.
Copolymer networks based on acrylonitrile (AN)/divinylbenzene (DVB) have been investigated by thermogravimetric analysis (TG) to evaluate their thermal stability in nitrogen atmosphere. Thermal stability was determined from TG-DTG curves to investigate the influence of AN and DVB in the synthesis of copolymers on the copolymer thermal properties. The TG and DTG curves of copolymers clearly show two thermodegradation stages. The solid residues produced after thermodegradation stages were analyzed by FTIR and elemental analysis (CHN). The decomposition temperatures were dependent on amount of AN and DVB used as the crosslinking agent. The degradation temperatures of copolymers were influenced by the diluent system during their synthesis. FTIR analyses indicate that the cyclization of the polymer proceeds before any mass loss.  相似文献   

19.
The thermal behavior of poly(ethylene‐co‐2,2‐bis[4‐(ethylenoxy)‐1,4‐phenylene]propane terephthalate) (PET/BHEEBT) copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry. A good thermal stability was found for all the samples. The thermal analysis carried out using DSC technique showed that the Tm of the copolymers decreased with increasing BHEEBT unit content, differently from Tg, which on the contrary increased. Wide‐angle X‐ray diffraction measurements permitted identifying the kind of crystalline structure of PET in all the semicrystalline samples. The multiple endotherms similar to PET were also evidenced in the PET/BHEEBT samples, due to melting and recrystallization processes. By applying the Hoffman–Weeks' method, the Tm° of PET and its copolymers was derived. The isothermal crystallization kinetics was analyzed according to Avrami's treatment and values of the exponent n close to 3 were obtained, independently of Tc and composition. Moreover, the introduction of BHEEBT units was found to decrease PET crystallization rate. Lastly, the presence of a crystal‐amorphous interphase was evidenced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1441–1454, 2005  相似文献   

20.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号