首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Green's function formulation is used to derive basic reciprocity relations for planar radiative transfer in a general medium with internal illumination. Reciprocity (or functional symmetry) allows an explicit and generalized development of the equivalence between source and probability functions. Assuming similar symmetry in three-dimensional space, a general relationship is derived between planar-source intensity and point-source total directional energy. These quantities are expressed in terms of standard (universal) functions associated with the planar medium, while all results are derived from the differential equation of radiative transfer.  相似文献   

2.
A standard problem in radiative transfer is finding the external and internal radiative fields produced by uniform, parallel rays illuminating the top of a one-dimensional, scattering and absorbing medium of finite optical thickness. This problem has been solved in several ways with various physical restrictions. One approach is by finding the source function that represents the rate of production of scattered radiation per unit volume per unit solid angle at each point in the medium. The present paper develops and uses the idea that the standard source function is an influence function for a given medium. The linearity of radiative transfer is then used to find certain general source functions in terms of the standard one. The usefulness of the above concept is demonstrated by the following four problems: (1) derivation of Chandrasekhar's four principles of invariance from the radiative transfer equation, (2) derivation of the equations governing Chandrasekhar's X- and Y- functions without using the invariance principles or resolvent kernels, (3) finding the source function for a medium with a Lambert's-law bottom, and (4) finding the source function for a medium with a bottom that is a perfect specular reflector.  相似文献   

3.
Many numerical models use periodic boundary conditions in solving the radiative transfer through heterogeneous media specified over a fixed domain. A reciprocity principle applicable to solutions from these models is derived for the common situation of a scattering and absorbing heterogeneous medium that is illuminated over the entire domain from a single direction. The derived reciprocity principle states that the domain-averaged bidirectional reflectance distribution function remains invariant when incoming and outgoing directions are interchanged, regardless of the heterogeneity of the medium and the size of the domain. This reciprocity principle provides a simple and useful benchmark test for radiative transfer models that use periodic boundary conditions.  相似文献   

4.
The matrix operator approach to radiative transfer is shown to be a very powerful technique in establishing symmetry relations for multiple scattering in inhomogeneous atmospheres. Symmetries are derived for the reflection and transmission operators using only the symmetry of the phase function. These results will mean large savings in computer time and storage for performing calculations for realistic planetary atmospheres using this method. The results have also been extended to establish a condition on the reflection matrix of a boundary in order to preserve reciprocity. Finally energy conservation is rigorously proven for conservative scattering in inhomogeneous atmospheres.  相似文献   

5.
A recent formulation in radiative transfer defined the thermal scattering functions that characterize radiative transfer from a general, plane-parallel, finite medium driven solely by an internal distribution of thermal sources. Exiting diffuse intensities are expressed as space convolutions of the thermal scattering functions with any thermal source distribution. A parametric study is presented to obtain the basic structure of these scattering functions. The independent variables of these azimuthally independent functions are the direction consine μ and source location t, while the parameters are the single scattering albedo ω, total optical depth t0, and the asymmetry factor g in the Henyey-Greenstein phase function. The basic functional trends are discussed using various parametric plots, and selected tabular results are given to allow numerical checks. The computational method is invariant imbedding. As a particular application, these functions are used in the following companion paper to obtain exiting intensities from inhomogeneous and nonisothermal media.  相似文献   

6.
Equivalence of MTF of a turbid medium and radiative transfer field   总被引:1,自引:0,他引:1  
The equivalence of the modulation transfer function (MTF) of a turbid medium and the transmitted radiance from the medium under isotropic diffuse illumination is demonstrated. MTF of a turbid medium can be fully evaluated by numerically solving a radiative transfer problem in a plane parallel medium. MTF for a homogenous single layer turbid medium is investigated as illustration. General features of the MTF in the low and high spatial frequency domains are provided through their dependence on optical thickness, single scattering albedo, asymmetrical factor, and phase function type.  相似文献   

7.
The equation of radiative transfer in an optically finite homogeneous atmosphere with different internal sources is solved using the method of kernel approximation the essence of which is to approximate the kernel in the equation for the Sobolev resolvent function by a Gauss-Legendre sum. This approximation allows to solve the equation exactly for the resolvent function while the solution is a weighted sum of exponents. Since the resolvent function is closely connected with the Green function of the integral radiative transfer equation, the radiation field for different internal sources can be found by simple integration. In order to simplify the obtained formulas we have defined the x and y functions as the generalization of the well-known Ambarzumian-Chandrasekhar X and Y functions.For some types of internal sources the package of codes in Fortran-77 can be found at http://www.aai.ee/∼viik/HOMOGEN.FOR.  相似文献   

8.
New analytical results are presented performing to cylindrical exponential integral (CEI) functions for integer and noninteger values of parameter n. These integrals are often employed of two-dimensional radiative transfer in an absorbing-emitting medium and determination of the radiative flux in cylindrical media. The simple and efficient algorithm for the calculation of these functions is developed. The series expansion relations established in this work are accurate enough in the whole range of parameters.  相似文献   

9.
求解介质内热辐射传递的双向统计蒙特卡罗法   总被引:2,自引:0,他引:2  
基于热辐射传输的光路可逆性原理,提出了求解介质内热辐射传递的双向统计蒙特卡罗法(BSMC法)。该方法采用等温等权抽样,利用能束传输路径的可逆关系进行辐射传递的双向统计计算,充分利用了能束跟踪的计算信息。以二维矩形区域内吸收性介质的热辐射传递为例,介绍了BSMC的求解过程,分析了其计算误差。通过数值模拟,从辐射传递因子计算结果的倒易性满足程度与辐射平衡温度场两方面,将BSMC法与传统的蒙特卡罗法(TMC法)进行了比较。结果表明,在相同的计算量下,BSMC法比TMC有更高的模拟精度。  相似文献   

10.
A solution technique is presented which successfully predicts the radiative intensity and flux path length distributions for a scattering medium with an arbitrary internal source. All scattering effects are included through the optical path length concept. The extension of the optical path length technique to incorporate internal sources permits relatively simple modeling of scattering layers with any source distribution (e.g. temperature) and any absorption feature using a data base of responses (path length distributions) to arbitrarily located internal single sources. Path length distributions are presented for a single source in the layer and exhibit trends similar to those seen in the boundary source problem. The effects of orders of scattering are demonstrated. Although the technique is directed to radiative heat transfer analyses, the source need not be a thermal source and the solutions are not restricted to thermal applications.  相似文献   

11.
The source function, radiative flux, and intensity at the boundaries are calculated for a two-dimensional, scattering, finite medium subjected to collimated radiation. The scattering phase function is composed of a spike in the forward direction super-imposed on an isotropic background. Exact radiative transfer theory is used to formulate the problem and Ambarzumian's method is used to obtain results. Using the principle of superposition, the results for any step variation in incident radiation are expressed in terms of universal functions for the semi-infinite step case. Two-dimensional effects are most pronounced at large optical thicknesses and albedos.  相似文献   

12.
Based upon the analytical solution of the radiative transfer equation for a given source function and a new approach to account for very many spectral lines contributing to the extinction, the connection between line properties and the emergent intensity is derived under the assumption that the wavelengths of the line centers follow a Poisson point process, whereas the other line parameters may have arbitrary distribution functions.A comparison with the widely used list of Kurucz shows that the Poisson distribution well describes deterministic “real” lines. The presentation by a Poisson point process requires only a modest number of parameters and is very flexible. It allows most operations to be carried out analytically and hence is very suitable to study the intricate influence of many lines on radiation fields in differentially moving media.We consider a simplified case of the solution of the radiative transfer equation in order to demonstrate the basic effects of the velocity field upon the emerging radiation field. Expressions for the expectation value of the intensity are derived, and examples are given for Lorentz line profiles and infinitely sharp lines, in particular as functions of the velocity gradient and the mean line density.  相似文献   

13.
Because the optical plane defined by the incidence and reflection direction at a cylindrical surface has a complicated relation with the local azimuthal angle and zenith angle in the traditional cylindrical coordinate system, it is difficult to deal with the specular reflective boundary condition in the solution of the traditional radiative transfer equation for cylindrical system. In this paper, a new radiative transfer equation for graded index medium in cylindrical system (RTEGCN) is derived based on a newly defined cylindrical coordinate system. In this new cylindrical coordinate system, the optical plane defined by the incidence and reflection direction is just the isometric plane of the local azimuthal angle, which facilitates the RTEGCN in dealing with cylindrical specular reflective boundaries. A least squares finite element method (LSFEM) is developed for solving radiative transfer in single and multi-layer cylindrical medium based on the discrete ordinates form of the RTEGCN. For multi-layer cylindrical medium, a radial basis function interpolation method is proposed to couple the radiative intensity at the interface between two adjacent layers. Various radiative transfer problems in both single and multi-layer cylindrical medium are tested. The results show that the present finite element approach has good accuracy to predict the radiative heat transfer in multi-layer cylindrical medium with Fresnel surfaces.  相似文献   

14.
A method is presented for solving the radiative transfer equation for a general anisotropically scattering and emitting medium exposed to arbitrary boundary radiation conditions. The method allows, in principle, for quite arbitrary spatial variability in the scattering and extinction properties of the medium. We formulate the method in the context of 2-dimensional radiative transfer and describe general solution procedures, based on the principles of invariant imbedding, which are applied in the form of doubling algorithms to obtain solutions for optically thick media. Some selected results are shown to demonstrate the versatility of the approach.  相似文献   

15.
The main goal of this paper is to give a rigorous derivation of the generalized form of the direct (also referenced as forward) and adjoint radiative transfer equations. The obtained expressions coincide with expressions derived by Ustinov [Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211]. However, in contrast to [Ustinov EA. Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211] we formulate the generalized form of the direct radiative transfer operator fully independent from its adjoint. To illustrate the application of the derived adjoint radiative transfer operator we consider the angular interpolation problem in the framework of the discrete ordinate method widely used to solve the radiative transfer equation. It is shown that under certain conditions the usage of the solution of the adjoint radiative transfer equation for the angular interpolation of the intensity can be computationally more efficient than the commonly used source function integration technique.  相似文献   

16.
This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation.  相似文献   

17.
An approach to formulation of inversion algorithms for thermal sounding in the case of scattering atmosphere based on the adjoint equation of radiative transfer (Ustinov, JQSRT 68 (2001) 195, referred to as Paper 1 in the main text) is applied to temperature retrievals in the scattering atmosphere for the nadir viewing geometry. Analytical expressions for the weighting functions involving the integration of the source function are derived. Temperature weighting functions for a simple model of the atmosphere with scattering are evaluated and convergence to the case of pure atmospheric absorption is demonstrated. The numerical experiments on temperature retrievals are carried out to demonstrate the validity of the expressions obtained.  相似文献   

18.
Abstract

The radiative transfer in a solid cylinder containing a homogeneous turbid medium with anisotropic scattering is considered. The medium has a diffuse and specular reflecting boundary illuminated by an external incidence and contains an internal energy source. This general problem can be solved in terms of the solution of the corresponding source-free problem with a specular reflecting boundary and isotropic external incidence. The Pomraning–Eddington approximation is used to solve the source-free problem. Three different weight functions are used to verify the boundary condition to find the constants of the solution. The partial flux, the irradiance and the net flux at the boundary for the general problem are calculated.  相似文献   

19.
The time-independent radiative transfer problem in a scattering and absorbing planar random medium with general boundary conditions and internal energy source is considered. The medium is assumed to consist of two randomly mixed immiscible fluids, with the mixing statistics described as a two-state homogeneous Markov process. The problem is solved in terms of the solution of the corresponding free-source problem with simple boundary conditions which is solved using Pomraning-Eddington approximation in the deterministic case. A formalism, developed to treat radiative transfer in statistical mixtures, is used to obtain the ensemble-averaged solution. The average partial heat fluxes are calculated in terms of the albedoes of the source-free problem. Results are obtained for isotropic and anisotropic scattering for specular and diffused reflecting boundaries.  相似文献   

20.
A functional relation is obtained between radiative transfer in an inhomogeneous medium with internal sources and diffuse reflection. The intensity of the emerging radiation for a linear source is obtained by using the Padé approximation. The single scattering albedo is assumed to decrease exponentially with optical depth. Numerical results are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号