首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The microwave “a” and “c” type spectra of four isotopic species of CH3NHCl in the ground state and of CH3NHCl35 and CH3NDCl35 in the first excited torsional state have been analyzed. From the A-E torsional splittings of the excited state the torsional barrier height has been determined to be V3 = 3710 ± 46 cal/mole. The “c” type transitions show an inversion doubling of 4.60 ± 0.10 MHz in the ground state and of 5.25 ± 0.10 MHz in the first excited torsional state. Such doublings are independent on the rotational quantum numbers within the experimental errors. The height of the inversion barrier has been roughly evaluated by using the Dennison-Uhlenbeck potential.  相似文献   

2.
Microwave spectra of methylsilylsulfide and its three isotopically substituted species were measured and their b-type transitions were assigned. The spectra of all the species exhibit doublet structures due to the internal rotation of the methyl group. Using the internal axis method, the potential barriers were determined from the observed A- and E-component frequencies to be 1081.0 ± 3.3, 1073.9 ± 2.0, 1065.1 ± 11.4, and 1076.0 ± 1.9 cal/mol for the normal, CH3SSiD3, CD3SSiH3, and 13CH3SSiH3 species, respectively. The analysis also yielded 3°49′ as the tilt angle of the methyl top. From the rotational constants obtained, a plausible structure was estimated. The molecular electric dipole moments were determined from the second-order Stark effect of some A-component transitions with low- J quantum numbers for the normal and SiD3 species. A comparison of the obtained parameters was made with analogous molecules.  相似文献   

3.
The microwave spectra of two isotopic species of thioacetic acid, CH3COSH and CH3COSD, have been studied. Using the principal axis method (PAM), including terms through n = 6 in the perturbation series and the denominator correction, the spectra were analyzed and 45 lines for CH3COSH and 40 lines for CH3COSD were assigned. The parameters obtained by the least-squares analysis are A = 9913.29 ± 0.56 MHz, B = 4923.11 ± 0.23 MHz, C = 3354.60 ± 0.24 MHz, θ = 57.080 ± 0.030°, s = 6.2980 ± 0.0012, and Iα = 3.198 ± 0.020 amuA?2 for CH3COSH, and A = 9662.80 ± 0.78 MHz, B = 4810.74 ± 0.26 MHz, C = 3273.92 ± 0.18 MHz, θ = 55.097 ± 0.024°, s = 5.9742 ± 0.0016, and Iα = 3.171 ± 0.020 amuA?2 for CH3COSD. The barrier to internal rotation of the methyl group is V3 = 222.6 ± 1.4 cal/mole for CH3COSH and V3 = 212.9 ± 1.4 cal/mole for CH3COSD. The Stark effect measurements of A species transitions for CH3COSH led to the dipole moment μ = 1.821 ± 0.013 D with the components μa = 0.191 ± 0.010 D and μb = 1.811 ± 0.013 D.  相似文献   

4.
The microwave spectra of silyl methyl ether, SiH3OCH3, and its isotopic modifications, SiH3OCD3, SiD3OCH3, and SiD3OCD3, have been observed and assigned. Large splittings arising from the internal rotation of the methyl top and somewhat smaller splittings arising from the internal rotation of the silyl top are observed. The “effective barrier” to internal rotation of the methyl top is approximately 550 cal/mole. The effective barrier to internal rotation of the silyl top is approximately 1100 cal/mole. The internal rotation of the two tops is strongly coupled, but no values for the potential coupling constants have been obtained. The dipole moment has been determined to be 1.15 ± 0.02 D (|μa| = 0.647 ± 0.01 and |μb| = 0.95 ± 0.02 D) from measurements of the Stark effect.  相似文献   

5.
The rotational spectra of αd1- and αd2-ortho-fluorotoluene in the ground state of the methyl group torsion have been measured. The evaluation of the spectra has been based on the theory for the internal rotation of an asymmetric internal top formulated earlier by several authors. The barrier potential being threefold symmetric (V3), each torsional level consists of three nondegenerate substates, designated as sy and ±asy. The sy-state is assigned to the conformation with the unique methyl hydrogen isotope within the molecular heavy-atom plane (sy-rotamer), while the ±asy-states belong to the respective out-of-plane conformation (asy-rotamer). In the torsional ground state the level spacing between the ±asy substates is very small and numerous accidental close degeneracies are present between the rotational level systems based on these torsional substates. The rotational levels involved are strongly perturbed by the coupling between molecular overall rotation and internal rotation. Large deviations from a rigid rotor spectrum and (+) ? (?) intersystem (“tunneling”) transitions are observed. The spectrum of the asy-rotamer can be well reproduced by a “two-dimensional” Hamiltonian containing 11 “rotational constants,” 9 of which are determined by a fit to the spectrum. Several are sufficiently barrier-dependent to derive V3. We obtain (in cal/mole) 567 ± 48 for αd1-ortho-fluorotoluene, 711 ± 40 for the αd2-isotope. The deviations from 649 cal/mole for the normal isotope are appreciable, probably indicating shortcomings of the semirigid model. The sy-rotamer presents a rigid rotor spectrum.  相似文献   

6.
Continuous wave and pulsed 1H N.M.R. data have been obtained for solid H3GaN(CH3)3 over the temperature range 63–300 K. A theoretical expression for the relaxation behaviour of a methyl group in a trimethylamine moeity undergoing various motions has been obtained to aid analysis of the data. We find the activation energy to rotation of the -GaH3 group to be 3·6 ± 0·3 kJ/mole (0·86 ± 0·07 kcal/mole), and to a different motion in the molecule to be 21 ± 2 kJ/mole (5·0 ± 0·5 kcal/mole). In the continuous wave spectra effects due to motion of the -CH3 groups and the whole -NMe3 moeity may be distinguished.  相似文献   

7.
Microwave spectra of fluoromethylethylether and its 13 isotopically substituted species have been measured. The rs structure of the GT isomer of this molecule was determined from the observed moments of inertia. The structural parameters obtained are roughly close to those of fluoromethylmethylether and the GT isomer of chloromethylethylether. The dipole moments and their directions in the molecule were determined from the Stark effect measurements of several low-J transitions for the normal and two deuterated species. The dipole moment of the normal species was found to be 1.806 ± 0.012 D, making angles of 136°50′ and 107°40′ with the CF and FCH2O bonds, respectively. From the A-E splittings of the spectra in the first excited methyl torsional state, the barrier to internal rotation of the methyl group was calculated to be 3150 ± 50 cal/mole in the one-top approximation.  相似文献   

8.
Nine microwave ground-state spectra of seven isotopes of ortho-xylene have been measured between 9 and 29 GHz. From the rotational constants a partial substitution structure could be calculated. The dipole moment was determined from Stark-lobe shifts, μa = 0.640 ± 0.005 D. The high-J transitions were found split into multiplets due to the interaction of methyl top internal rotation with the overall molecular rotation; doublets through quintets with the correct nuclear spin weight dependence could be observed according to group-theoretical expectations. A weighted average, V3 = 1490 ± 50 cal/mole, was derived for the internal rotation barrier neglecting top-top coupling and presumably small, higher than threefold barrier terms. The methyl groups both stagger the bond between the two benzene carbon atoms which carry them.  相似文献   

9.
The microwave rotational spectrum of the unstable species thioacetaldehyde, CH3CHS, has been studied in a flow pyrolysis system. Eight isotopic variants have been studied allowing an accurate substitution structure to be derived. Most of the spectral lines show splittings due to internal rotation, analysis of which has allowed a barrier study to be made. For the torsional ground state of the most abundant species, V3 = 1572 ± 30 cal/mole or 375.7 ± 7 J/mole. The dipole moment is μ = 2.33 ± 0.02 D with components μA = 2.26 ± 0.02 and μB = 0.56 ± 0.01 D.  相似文献   

10.
From the microwave spectrum of dimethylketene which has been recorded from 8 to 37 GHz, the following rotational constants were derived: A = 8 267.832 ± 0.8, B = 3 884.101 ± 0.03, C = 2 728.826 + 0.03 MHz. The dipole moment is μa = 1.94 ± 0.01 D. Substitution coordinates for all methyl group atoms have been obtained by investigating the spectra of six isotopic species of the molecule. The potential barrier V3 hindering internal rotation of the methyl tops has been fitted to the multiplet width of a number of high-J ground state aQ-transitions which were observed as triplets. V3 is 2065 cal/mole, keeping fixed Iα = 3.132 amu Å2 and angle (methyl-top to a-axis) = 58.94° as obtained from the partial substitution studies.  相似文献   

11.
The microwave spectra of four substituted isotopic species of 2-methoxyethylamine (NH2, NHD, NDH, ND2) have been assigned. The molecule is found to exist in a gauche form with an intramolecular hydrogen bond of the NH?O type. The four possible sets of the amino hydrogen rs corrdinates give different H?H distances, probably because the -NH2 group is involved in large amplitude vibrations and because of changes in the heavy atom positions arising from the deuteration of the hydrogen bond. For the most abundant species many vibrational states have been analyzed and assigned to the two possible CO torsions in the molecule. A value V3 = 3150 ± 50 cal/mol was found for the methyl torsional barrier and V1 = 9 ± 3 kcal/mol for the other CO torsional barrier. A third set of observed vibrational satellites is probably assignable to the CC torsion. The determination of the dipole moment and of the quadrupole coupling constants gave values which were not in good agreement with those predicted from nonhydrogen bonded molecules. In addition a value V3 = 3100 ± 100 cal/mol was calculated for the CH3 torsional barrier in the related 2-methoxyethanol, using previous experimental data (Canad. J. Chem.50, 1149–1156 (1972)).  相似文献   

12.
The 1-silabicyclo[2.2.2]octane molecule HSi(CH2CH2)3CH was investigated by microwave spectroscopy. The observed spectra followed the symmetric-rotor pattern with the unresolved K structures, but were accompanied by many strong vibrational satellites. A series of the prominent satellites was assigned to the excited states of the skeletal torsion. The transition frequencies and the relative intensities which were measured for the satellites were used to determine the double-minimum potential function to the skeletal torsion. The height of the potential hump and the equilibrium torsional angle, which was defined as the SiCCC dihedral angle, were determined to be 606 ± 40 cal/mole and 21.3° ± 1.0°, respectively. The results that the double-minimum nature of the potential function is more pronounced in 1-silabicyclo[2.2.2]octane than in other bicyclo[2.2.2]octane derivatives studied previously are discussed in detail in terms of the internal-rotation potential around the CC and CSi bonds and the strains in the valence angles of the C and Si atoms.  相似文献   

13.
The microwave spectrum of methyltrichlorogermane has been investigated in the region 26.5 to 40.0 GHz. The ground state rotational constants, B, were found to be 1602.19, 1601.42, 1601.10, 1600.71, 1600.02, 1537.84, 1537.10, and 1536.36 MHz for the symmetric top molecules CH370Ge35Cl3, CH372Ge35Cl3, CH373Ge35Cl3, CH374Ge35Cl3, CH376Ge35Cl3, CH370Ge37Cl3, CH372Ge37Cl3, and CH374Ge37Cl3, respectively. For the asymmetric top molecules CH372Ge35Cl237Cl and CH374Ge35Cl237Cl the ground state rotational constants A, B, and C were found to be 1597.96, 1559.31, 1203 and 1597.17, 1558.59, 1207 MHz, respectively. From the rotational constants the rs values for the GeCl bond distance of 2.135 ± 0.006 Å and the CGeCl bond angle of 106.0 ± 0.7° were obtained. The centrifugal distortion constant for the CH3Ge35Cl3 species was calculated to be 0.35 ± 0.08 kHz. The Raman spectra of methyltrichlorogermane has been recorded in the gas phase and the methyl torsional overtone (Δν = 2) was observed. From the observed frequency shift the barrier to internal rotation has been calculated to be 1.45 kcal/mole.  相似文献   

14.
The vapor pressure of InN has been determined experimentally using a static pressure measurement technique. The measurements give log10 PN2= 9.78−13649/T, and are in excellent agreement with previous calculations and, we believe, represent a significantly more accurate estimate of the thermal stability of InN. We estimate heats and entropies of formation to be -31.4 ± 1.6 kcal/mole and 22.4 ± 1.9 cal/K-mole, respectively.  相似文献   

15.
The microwave spectra of three isotopic species of methoxyamine (CH3ONH2) have been studied. For the normal species the ground-state rotational constants are A = 42488 ± 150 MHz, B = 10049.59 ± 0.03 MHz, and C = 8962.85 ± 0.03 MHz. From these data and those from the -NHD and -ND2 species, the amino protons have been shown to occupy a symmetrical trans position relative to the methyl group. The barrier to internal rotation of the methyl group has been found to be 873 ± 15 cm?1 by analysis of ground-state splittings. Analysis of hyperfine splittings has yielded the 14N quadrupole coupling constants, which have the following values for the normal isotopic species: χaa = 3.63 ± 0.03 MHz, χbb = ?3.69 ± 0.07 MHz, and χcc = 0.06 ± 0.07 MHz.  相似文献   

16.
Strengths of individual lines in the v1 fundamental of methyl chloride have been measured at low pressure and at 296.35 K using a Fourier transform interferometer. The band strengths Sv0 obtained by fitting these measurements are 85.8±1.0 and 86.6±1.0 cm-2 atm-1 for 12CH335Cl and 12CH337Cl, respectively. The Q3-branch appears to be useful for atmospheric detection of methyl chloride.  相似文献   

17.
The transitions J = 1 ← 0, K = 0; J = 2 ← 1, K = 0; and J = 2 ← 1, K = 1 of CH3I and CD3I were measured using a Stark-modulated microwave spectrometer. Iodine quadrupole coupling strengths were analyzed to determine variations with deuterium substitution on the methyl group and variations with centrifugal distortion. Quadrupole coupling strengths were described by the expression eQq0 + aJ(J + 1) + bK2 + cK4J(J + 1). Explicit expressions are given for a, b, and c for a symmetric top in terms of molecular parameters. For CH3I eQq0 = ?1934.11 ± 0.02 MHz and for CD3I eQq0 = ?1928.95 ± 0.04 MHz. Rotational constants obtained are B(CH3I) = 7501.274 ± 0.002 MHz and B(CD3I) = 6040.298 ± 0.007 MHz. The observed fractional change in halogen quadrupole coupling of 0.0027 is related to previous results for methyl chloride and methyl bromide.  相似文献   

18.
The microwave spectrum of chloromethyl methyl ether has been studied in the region 12.4–40 GHz. For 35Cl species, a- and c-type transitions have been assigned for the ground state, the first excited state of the chloromethyl torsional mode, and the first excited state of the methyl torsional mode. Assignments were also made for the ground state of 37Cl species. The assigned transitions are due to the gauche conformer. The nuclear quadrupole coupling constants were determined for the ground state of 35Cl and 37Cl species. The observed A-E splittings of the rotational transitions arising from the three vibrational states indicate a strong coupling between the two torsional vibrations. A model calculation based on the Hamiltonian previously used by Butcher and Wilson (J. Chem. Phys.40, 1671 (1964)), was carried out to account for the splittings and the vibrational frequencies of the two torsional modes. The barrier to internal rotation of the methyl group is estimated to be V3 = 647 ± 17 cm?1 (1.84 ± 0.05 kcal/mole).  相似文献   

19.
The J = 0 ← 1 transitions in CH379Br (I), CH381Br (II), CD379Br (III), and CD381Br (IV) were measured using a Stark-cell spectrometer constructed from C-band waveguide. High-resolution spectra yielded precise values for the bromine quadrupole coupling strength. Values obtained were eqQ(I) = ?577.08 ± 0.15 MHz, eqQ(II) = ?482.18 ± 0.15 MHz, eqQ(III) = ?575.66 ± 0.15 MHz, and eqQ(IV) = ?480.89 ± 0.15 MHz. The observed center frequencies for the J = 0 ← 1 transitions are ν0(I) = 19136.35 ± 0.03 MHz, ν0(II) = 19063.62 ± 0.03 MHz, ν0(III) = 15429.23 ± 0.03 MHz, and ν0(IV) = 15362.41 ± 0.03 MHz. A 0.26 ± 0.02% decrease in bromine quadrupole coupling is observed when the methyl group is fully deuterated. This is in agreement with, and supports interpretations given for, previous results on methyl chloride.  相似文献   

20.
The specific heat and magnetic susceptibility of the transition metal oxide ReO3 have been measured. The specific heat results give a Debye temperature ΘD = 460 ± 10 K and an electronic specific heat coefficient γ = 6.45 ± 0.07 cal/mole K2 which are in good agreement with similar measurements on the cubic sodium tungsten bronzes. The magnetic susceptibility and the electronic contribution to the specific heat are within a few percent of the corresponding parameters calculated from the free electron model with one electron per unit cell. Our results show that ReO3 behaves much like a simple metal. No experimental evidence for narrow d-band effects was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号