首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was observed that a microwave field induces constant differential resistance steps, close in magnitude to the reciprocal of the conductance quantum h/2e 2, in the current-voltage characteristics (IVCs) of layered structures with an intrinsic Josephson effect under conditions of transport in a direction perpendicular to the layers. A qualitative explanation of this result is proposed. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 1, 68–71 (10 January 1998)  相似文献   

2.
The effect of a magnetic field H⊥(ab) on the transverse current-voltage characteristics (IVCs) of the mixed state of a single crystal of the layered superconductor Bi2Sr2CaCu2Oy (BSCCO) is investigated. It is established that in a wide range of temperatures and fields above the irreversibility line the initial part of the IVC is described by the law VI γ with γ≃1. As the current increases further, this law is replaced by a section where V∝exp(I). It is established that the multivalued, multibranch characteristics, interpreted as a manifestation of an internal Josephson effect, do not change appreciably when the crystal passes into a state with nonzero linear resistance. The character of the dependence of the characteristic switching current on the first resistive branch, I J (H,T), is determined. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 8, 543–548 (25 October 1999)  相似文献   

3.
The formation of the superconducting phase in short-period proximity-effect layered superlattices of the superconductor-band-antiferromagnetic-metal (SC/AF) type is studied. The exact solution of the Usadel equations is used to discuss the possibility of formation in such structures of a ground state in which the order parameters of the adjacent superconducting layers have opposite signs (the “π-phase”). The dependence of the superconducting transition temperature and the upper critical field normal to the layers on the lattice period, the intensity of magnetic interaction in the antiferromagnetic layer, and the state of the interface between the layers is examined. It is found that there exists a nonlinear dependence of the conditions for the appearance of the superconducting state in a layered SC/AF system on the system’s parameters. Finally, the conditions for the appearance of the superconducting phase in proximity-effect superlattices consisting of a superconductor with nonmagnetic, ferromagnetic, and antiferromagnetic metals are compared. Zh. éksp. Teor. Fiz. 111, 547–561 (February 1997)  相似文献   

4.
This paper examines the time-dependent Josephson effect in systems of tunnel superconducting junctions and in layered superconductors (the intrinsic Josephson effect) with allowance for nonequilibrium superconductivity effects. Kinetic and quasihydrodynamic equations are derived that describe self-consistently the dynamics of Josephson phases and nonequilibrium quasiparticles. It is found that the state of nonequilibrium between the layers leads to an effective mechanism of the interaction between interlayer Josephson junctions, which can be used to synchronize the junctions. Current-voltage characteristics of chains of intrinsic junctions are obtained for different values of the parameters. Zh. éksp. Teor. Fiz. 116, 1798–1816 (November 1999)  相似文献   

5.
The role of anisotropy of the coupling constant in the influence of nonmagnetic impurities on the behavior of the superconducting transition temperature T c is investigated in the high-temperature superconductor (HTSC) model, where high values of T c result from an increase in the density of states near the Fermi surface. It is shown that this model is more sensitive to impurities than the BCS model; Anderson compensation does not occur in the HTSC model, even for identical distributions of the densities of states in the superconducting and impurity channels, and the impurity contributions are no longer linear with respect to the impurity concentration in the vicinity of T c. Anisotropy of the superconducting gap Δ and the possibility of its disappearance at certain points on the Fermi surface due to various types of pairing are manifested in the stability of the superconducting phase against the influence of impurities. Fiz. Tverd. Tela (St. Petersburg) 39, 1940–1942 (November 1997)  相似文献   

6.
We develop a theory of Coulomb oscillations in superconducting devices in the limit of small charging energy E C ≪Δ. We consider a small superconducting grain with finite capacitance connected to two superconducting leads by nearly ballistic single-channel quantum point contacts. The temperature is assumed to be very low, so there are no single-particle excitations on the grain. Then the behavior of the system can be described in terms of the quantum mechanics of the superconducting phase on the island. The Josephson energy as a function of this phase has two minima that become degenerate when the phase difference on the leads equals to π, the tunneling amplitude between them being controlled by the gate voltage on the grain. We find the Josephson current and its low-frequency fluctuations, and predict their periodic dependence with period 2e on the induced charge Q x =CV g . Zh. éksp. Teor. Fiz. 114, 640–653 (August 1998) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor  相似文献   

7.
A change in the effect of a frozen magnetic field parallel to the c-axis on rf power absorption, which is associated with the motion of Josephson vortices, is observed in the layered superconductor Bi2Sr2CaCu2O8 at a low temperature (~15 K). The effect is interpreted as a change in the interaction between an Abrikosov vortex and a Josephson vortex from attraction (at high temperatures) to repulsion (at low temperatures). It is found that the dynamics of the magnetic flux parallel to the ab plane of the single crystal becomes irreversible upon a transition of the superconductor to the layered state. Possible reasons behind the observed effect are considered, one of them being a manifestation of the second superconducting transition in the elementary-excitation spectrum of a d-type superconductor near the core of Abrikosov vortices.  相似文献   

8.
We report on thec-axis superconducting energy gap parameter Δ c (T) of intrinsic Josephson tunnel junctions inBi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals. Δ c (4.2K)≈10−13 meV, which is approximately a factor of two smaller than reported in the majority of tunneling experiments. Δ c (T) deviates strongly from the BCS temperature dependence. These observations may be explained by a multilayer model of Bi2212 which assumes that theBi−O layers are superconducting due to the proximity effects. The Josephson tunneling then takes place between adjacentBi−O layers while there is a strong proximity coupling betweenBi−O andCu−O layers. The work is supported by Swedish Supercon-ductivity Consortium and NUTEK, and, in part, by Russian Foundation for Basic Research, grant #95-02-04307  相似文献   

9.
An experimental investigation is made of the subharmonic Shapiro steps observed on the I-V curves of high-T c superconductor Josephson junctions and on the bias-voltage dependences of the rf noise and detector response when the junctions are subjected to external submillimeter radiation. Structures of this type are ordinarily described by a nonsinusoidal current-phase relation, which is why subharmonic steps appear. Numerical modeling of the processes occurring in a Josephson junction by means of a simple current-phase relation, as in the case of an SNS junction, gives good agreement with experiment. The width of the characteristic Josephson generation line of the junction was estimated on the basis of the noise dependences and the selective detector response. The width can be explained by taking into account the shot noise of the tunneling component of the conductivity. A model of the conductivity of a high-T c superconductor Josephson junction, consisting of a tunnel junction with microshorts possessing metallic conductivity, is discussed. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 5, 426–430 (10 September 1998)  相似文献   

10.
Features of a phase transition between 0 and π states in superconductor/ferromagnet/superconductor (SFS) Josephson structures with thin superconducting layers and a ferromagnetic barrier are studied experimentally and theoretically. The dependence of the critical temperature Tc of a transition of the hybrid structure to a superconducting state on the thickness of superconducting layers ds is analyzed by a local method involving measurements of the nonlinear microwave response of the system by a near-field probe. An anomalous increase in the measured temperature Tc at the reduction of the thickness ds is detected and is attributed to the 0-π transition.  相似文献   

11.
Supercooling in the transition of a type I superconductor to the superconducting state in contact with another superconductor whose critical temperature is higher has been measured. Using aluminum as a test material, it has been demonstrated that at temperatures below the critical temperature T c and magnetic fields below the critical field H c(T), aluminum remains in a metastable normal state, in spite of its contact with another superconductor. This means that it is not possible to generate a thermodynamic instability in a superconductor’s electronic system through the “proximity effect” with another superconductor whose critical temperature is higher. This experimental observation demonstrates a radical difference between surface superconductivity, which certainly generates instability in normal electronic states, and superconductivity induced by the proximity effect near a junction with another superconductor. Zh. éksp. Teor. Fiz. 112, 1119–1131 (September 1997)  相似文献   

12.
In a model for an anisotropic superconductor with a multicomponent gap parameter and Coulomb repulsion predominating between electrons from different sections of a multiply-connected Fermi surface, anomalous temperature dependences for different components of the gap are obtained which are radically different from the temperature dependence of the gap in the BCS theory and which agree with the experimental data for the anisotropic gap in the high-temperature superconductor Bi2Sr2CaCu2O8+x . Pis’ma Zh. éksp. Teor. Fiz. 63, No. 7, 553–558 (10 April 1996)  相似文献   

13.
A theoretical model of a rough surface in a d-wave superconductor is studied for the general case of arbitrary strength of electron scattering by an impurity layer covering the surface. Boundary conditions for quasiclassical Eilenberger equations are derived at the interface between the impurity layer and the d-wave superconductor. The model is applied to the self-consistent calculation of the surface density of states and the critical current in d-wave Josephson junctions. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 3, 242–246 (10 February 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

14.
Coherent electron transport in structures with multiband superconductors described by models of intraorbital (the s ± model) and interorbital superconducting pairing has been theoretically considered. Conductivities of junctions of a single-band normal metal with superconducting pnictides for these pairing models have been calculated. Temperature and phase dependences of the Josephson current through junctions containing a conventional Bardeen-Cooper-Schrieffer superconductor and a superconducting pnictide have been calculated within the considered pairing models taking into account temperature dependences of superconducting order parameters.  相似文献   

15.
We report on the fabrication of Nb/AlO x /Pd0.82Ni0.18/Nb superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson junctions with high critical current densities, large normal resistance times area products, high quality factors, and very good spatial uniformity. For these junctions a transition from 0- to π-coupling is observed for a thickness d F @\simeq 6 nm of the ferromagnetic Pd0.82Ni0.18 interlayer. The magnetic field dependence of the π-coupled junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd0.82Ni0.18 has an out-of-plane anisotropy and large saturation magnetization, indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes provides information on the junction quality factor and the relevant damping mechanisms up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at low frequencies, the damping is dominated by the finite surface resistance of the junction electrodes at high frequencies. High quality factors of up to 30 around 200 GHz have been achieved. Our analysis shows that the fabricated junctions are promising for applications in superconducting quantum circuits or quantum tunneling experiments.  相似文献   

16.
Measurements of the temperature dependence of the electrical resistance R(T) below the superconducting transition temperature have been performed at different values of the transport current in HTSC+CuO composites modeling a network of weak S-I-S Josephson junctions (S—superconductor, I—insulator). It has been shown experimentally that the temperature dependence R(T) at different values of the transport current is adequately described by means of the mechanism of thermally activated phase slippage developed by Ambegaokar and Halperin for tunnel structures. Within the framework of this model we have numerically calculated the temperature dependence of the critical current J c(T) as defined by various criteria. Qualitative agreement obtains between the measured and calculated temperature dependences J c(T). Fiz. Tverd. Tela (St. Petersburg) 41, 969–974 (June 1999)  相似文献   

17.
We solve a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation, study the Zeeman effects on the d-wave superconducting gap and thermodynamic potential. The Josephson currents in the d-wave superconductor (S)/insulating layer (I)/d-wave S junction are calculated as a function of the temperature, exchange field, and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss. It is found that the Josephson critical currents in d-wave S/d-wave S junction depend to a great extent on the relative orientation of the effective exchange field of the two S electrodes, and the crystal orientation of the d-wave S. The exchange field can under certain conditions enhance the Josephson critical current in a d-wave S/I/d-wave S junction.  相似文献   

18.
The phase diagram of a two-dimensional Josephson array of mesoscopic objects (superconducting granules, superfluid helium in a porous medium, traps with Bose-condensed atoms, etc.) is examined. Quantum fluctuations in both the modulus and phase of the superconducting order parameter are taken into account within a lattice boson Hubbard model. Modulating the average occupation number n 0 of the sites in the system (the “number of Cooper pairs” per granule, the number of atoms in a trap, etc.) leads to changes in the state of the array, and the character of these changes depends significantly on the region of the phase diagram being examined. In the region where there are large quantum fluctuations in the phase of the superconducting order parameter, variation of the chemical potential causes oscillations with alternating superconducting (superfluid) and normal states of the array. On the other hand, in the region where the bosons interact weakly, the properties of the system depend monotonically on n 0. Lowering the temperature and increasing the particle interaction force lead to a reduction in the width of the region of variation in n 0 within which the system properties depend weakly on the average occupation number. The phase diagram of the array is obtained by mapping this quantum system onto a classical two-dimensional XY model with a renormalized Josephson coupling constant and is consistent with our quantum path-integral Monte Carlo calculations. Zh. éksp. Teor. Fiz. 114, 591–604 (August 1998)  相似文献   

19.
拓扑超导体自身具有对量子退相干天然的免疫性以及可编织性,这使得它在现代量子计算领域中受到了越来越多的重视,并且成为了下一代计算技术中最有希望的候选者之一。由于拓扑超导态在固有拓扑超导体中相当罕见,因此,当前大部分实验上的工作主要集中在由 s 波超导体与拓扑绝缘体之间通过近邻效应所诱导的拓扑超导体上。本论文中,我们回顾了基于拓扑绝缘体/超导体异质结的拓扑超导体的研究进展。在理论上,Fu 和 Kane 提出,通过近邻效应将 s 波超导体的能隙引入到拓扑绝缘体,可以诱导出拓扑超导电性。在实验上,我们也回顾了一些不同体系中的拓扑超导近邻效应的研究进展。文章的第一部分,我们介绍了一些异质结,包括:三维拓扑绝缘体 Bi2Se3和 Bi2Se3 与 s 波超导体NbSe2 以及 d 波超导体 Bi2Sr2CaCu2O8+δ 的异质结,拓扑绝缘体 Sn1−xPbxTe 与 Pb 的异质结,二维拓扑绝缘体 WTe2 与NbSe2 的异质结。此外,还介绍了 TiBiSe2 在 Pb 上的拓扑绝缘近邻效应。另一部分中,我们对基于拓扑绝缘体的约瑟夫森结进行了回顾,包括著名的基于 Fu-Kane 体系的拓扑绝缘体约瑟夫森结,以及基于约瑟夫森结的超导量子干涉器件。  相似文献   

20.
We calculate the dc Josephson current for two superconductor/ferromagnet (S/F) bilayers separated by a thin insulating film. It is demonstrated that the critical Josephson current I(c) in the junction strongly depends on the relative orientation of the effective exchange field h of the bilayers. We found that in the case of an antiparallel orientation I(c) increases at low temperatures with increasing h and at zero temperature has a singularity when h equals the superconducting gap Delta. This striking behavior contrasts with the suppression of the critical current by the magnetic moments aligned in parallel and is an interesting new effect of the interplay between superconductors and ferromagnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号