首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Recent developments in optical detection methods for microchip separations   总被引:4,自引:0,他引:4  
This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.  相似文献   

2.
A unique laser-induced fluorescence (LIF) reader equipped with a turbidimetric system was developed for a sandwich-type immunoassay using nanoparticles. The system was specifically designed to reduce experimental error caused by particle loss, aggregation and sinking, and to improve analytical performance through ratiometric measurement of the fluorescence with respect to the turbidimetric absorbance. For application to determine the concentration of salinomycin, magnetic nanoparticles (MNPs) and FITC-doped silica nanoparticles (colored balls) immobilized with antibody were synthesized for magnetic extraction and for tagging as a fluorescence probe, respectively. The detection limit of about 39 pg mL−1 was obtained, which was an improvement of about 2-fold compared to that obtained without employment of the turbidimetric system. Calibration linearity and sensitivity were also improved, with increase from 0.8601 to 0.9905 in the R2-coefficient and by 1.92-fold for the curve slope, respectively. The developed LIF reader has the potential to be used for fluorescence measurements using various nanomaterials, such as quantum dots.  相似文献   

3.
Formaldehyde (CH2O) is an important intermediate species in combustion processes and it can through laser-induced fluorescence measurements be used for instantaneous flame front detection. The present study has focussed on the use of the third harmonic of a Nd:YAG laser at 355 nm as excitation wavelength for formaldehyde, and different dimethyl ether (C2H6O) flames were used as sources of formaldehyde in the experiments. The investigations included studies of the overlap between the laser profile and the absorption lines of formaldehyde, saturation effects and the potential occurrence of laser-induced photochemistry. The technique was applied for detection of formaldehyde in an internal combustion engine operated both as a spark ignition engine and as a homogenous charge compression ignition engine.  相似文献   

4.
The combination of the laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) techniques was investigated to improve the limit of detection (LoD) of trace elements in solid matrices. The influence of the main experimental parameters on the LIF signal, namely the ablation fluence, the excitation energy, and the inter-pulse delay, was studied experimentally and a discussion of the results was presented. For illustrative purpose we considered detection of lead in brass samples. The plasma was produced by a Q-switched Nd:YAG laser and then re-excited by a nanosecond Optical Parametric Oscillator (OPO) laser. The experiments were performed in air at atmospheric pressure. We found out that the optimal conditions were obtained for our experimental set-up using relatively weak ablation fluence of 2–3 J/cm2 and an inter-pulse delay of about 5–10 μs. Also, a few tens of microjoules was typically required to maximize the LIF signal. Using the LIBS–LIFS technique, a single-shot LoD for lead of about 1.5 part per million (ppm) was obtained while a value of 0.2 ppm was obtained after accumulating over 100 shots. These values represent an improvement of about two orders of magnitude with respect to LIBS.  相似文献   

5.
We have developed a new method for the high-speed separation and high-sensitivity detection of complex oligosaccharides based on microchip electrophoresis (nu-CE) with light-emitting diode (LED) confocal fluorescence detection. Oligosaccharides labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS) were found to strongly adsorb to the surface of polymethylmethacrylate (PMMA) microchips. Accordingly, three classes of major dynamic coating additives were systematically investigated, and cellulose derivatives were found to specifically suppress such adsorption and allow high-performance separation on PMMA chips. Additive concentration, buffer pH and applied field strength were found to be key factors in the high-performance separation& of APTS-labeled oligosaccharides on PMMA chips. Under optimal conditions, 15 oligosaccharides in dextrin hydrolysate can be separated within 45 s with an electrophoretic separation efficiency of over 400 000 theoretical plates per meter. The relative standard deviation (RSD) values of migration times of fourteen oligosaccharides were less than 0.50% between six different channels, and the detection limit for APTS-labeled glucose was about 1.98 x 10(-8) mol/L or 8.61 amol with a signal-to-noise ratio (S/N) of 3. The high speed, high efficiency and high sensitivity of this micro-CE-based method indicate that it can be widely applied to analysis of complex oligosaccharides.  相似文献   

6.
Herein, we summarize the current status of native fluorescence detection in microchannel electrophoresis, with a strong focus on chip-based systems. Fluorescence detection is a powerful technique with unsurpassed sensitivity down to the single-molecule level. Accordingly fluorescence detection is attractive in combination with miniaturised separation techniques. A drawback is, however, the need to derivatize most analytes prior to analysis. This can often be circumvented by utilising excitation light in the UV spectral range in order to excite intrinsic fluorescence. As sensitive absorbance detection is challenging in chip-based systems, deep-UV fluorescence detection is currently one of the most general optical detection techniques in microchip electrophoresis, which is especially attractive for the detection of unlabelled proteins. This review gives an overview of research on native fluorescence detection in capillary (CE) and microchip electrophoresis (MCE) between 1998 and 2008. It discusses material aspects of native fluorescence detection and the instrumentation used, with particular focus on the detector design. Newer developments, featured techniques, and their prospects in the future are also included. In the last section, applications in bioanalysis, drug determination, and environmental analysis are reviewed with regard to limits of detection.  相似文献   

7.
The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.  相似文献   

8.
A compact measurement system based on a novel combination of cantilever enhanced photoacoustic spectroscopy (CEPAS) and optical parametric oscillator (OPO) was applied to the gas phase measurement of benzene, toluene, and o-, m- and p-xylene (BTX) traces. The OPO had a band width (FWHM) of 1.3 nm, was tuned from 3237 to 3296 nm in steps of 0.1 nm and so spectra of BTX at different concentrations were recorded. The power emitted by the OPO increased from 88 mW at 3237 nm to 103 mW at 3296 nm. The univariate detection limits (3σ, 0.951 s) for benzene, toluene, p-, m- and o-xylene at 3288 nm were 12.0, 9.8, 13.2, 10.1 and 16.0 ppb, respectively. Multivariate data analysis using science-based calibration was used to resolve the interference of the analytes. The multivariate detection limits (3σ, 3237–3296 nm, 591 spectral points each 0.951 s) for benzene, toluene, p-, m- and o-xylene in the multi-compound sample, where all other analytes and water interfere were 4.3, 7.4, 11.0, 12.5 and 6.2 ppb, respectively. Without interferents, the multivariate detection limits varied between 0.5 and 0.6 ppb. The sum of the cross-selectivities (3237–3296 nm, 591 spectral points, each 0.951 s) per analyte were below 0.05 ppb/ppb, with an average of 0.038 ppb/ppb. The cross-selectivity of water to the analytes was on average 1.22 × 10−4 ppb/ppb. The OPO is small in size (L × W × H 125 × 70 × 45 mm), commercially available, and easy to operate and integrate to setups. The combination with sensitive CEPAS enables compact measurement systems for industrial as well as environmental trace gas monitoring.  相似文献   

9.
Tolba K  Belder D 《Electrophoresis》2007,28(16):2934-2941
Microchip electrophoresis (MCE) with native fluorescence detection has been applied for the fast quantitative analysis of pharmaceutical formulations. For this purpose, methods for fast separation and sensitive detection of the unlabeled diuretic drugs, amiloride, triamterene, bendroflumethiazide (BFMTZ), and bumetanide were developed. An epifluorescence setup was used enabling the coupling of different lasers into a commercial fluorescence microscope. The detection sensitivity of different excitation light sources was compared utilizing either a HeCd laser (lambda(exc) = 325 nm), a frequency quadrupled Nd:YAG laser (lambda(exc) = 266 nm), or a mercury lamp (lambda(exc) = 330-380 nm). At optimal conditions using the HeCd laser, the drugs were separated within 15 s with LODs less than 1 mug/mL for the four compounds. A linear relationship between concentration and peak area was obtained in the concentration range of 0.05-20 microg/mL with a mean correlation coefficient of around 0.996 for all analytes. The method was successfully applied to the analysis of the respective drugs in commercial formulations and in human urine without interference from other constituents. These data show that MCE has a great potential for reliable drug analysis.  相似文献   

10.
Over the past few years, a large number of studies have been prepared that describe the analysis of peptides and proteins using capillary electrophoresis (CE) and laser-induced fluorescence (LIF). These studies have focused on two general goals: (i) development of automatic, selective and quick separation and detection of mixtures of peptides or proteins; (ii) generation of new methods of quantitation for very low concentrations (nm and subnanomolar) of peptides. These two goals are attained with the use of covalent labelling reactions using a variety of dyes that can be readily excited by the radiation from a commonly available laser or via the use of noncovalent labelling (immunoassay using a labelled antibody or antigen or noncovalent dye interactions). In this review article, we summarize the works which were performed for protein and peptide analysis via CE-LIF.  相似文献   

11.
The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.  相似文献   

12.
A laser-induced native fluorescence detection system optimized for analysis of indolamines and catecholamines by capillary electrophoresis is described. A hollow-cathode metal vapor laser emitting at 224 nm is used for fluorescence excitation, and the emitted fluorescence is spectrally distributed by a series of dichroic beam-splitters into three wavelength channels: 250–310 nm, 310–400 nm, and >400 nm. A separate photomultiplier tube is used for detection of the fluorescence in each of the three wavelength ranges. The instrument provides more information than a single-channel system, without the complexity associfated with a spectrograph/charge-coupled device-based detector. With this instrument, analytes can be separated and identified not only on the basis of their electrophoretic migration time but also on the basis of their multichannel signature, which consists of the ratios of relative fluorescence intensities detected in each wavelength channel. The 224-nm excitation channel resulted in a detection limit of 40 nmol L−1 for dopamine. The utility of this instrument for single-cell analysis was demonstrated by the detection and identification of the neurotransmitters in serotonergic LPeD1 and dopaminergic RPeD1 neurons, isolated from the central nervous system of the well-established neurobiological model Lymnaea stagnalis. Not only can this system detect neurotransmitters in these individual neurons with S/N>50, but analyte identity is confirmed on the basis of spectral characteristics. Lapainis and Scanlan contributed equally to this work.  相似文献   

13.
This work described a sensitive method for determination of metoprolol in rabbit plasma.The method involved purification by ultrafiltration,derivatization with fluorescein isothiocyanate,determination by capillary electrophoresis(CE) coupled with laser-induced fluorescence(LIF) detector.Other components in plasma including a variety of amino acids and proteins did not interfere with the determination of metoprolol in experimental condition.The assay had a wide range(2.0-500 ng/mL) of linearity and a detection limit of 0.8 ng/mL.The intra- and inter-day precisions were satisfactory with relative standard deviation(RSD) less than 10.0%and accuracy within 10.0%.This method was successfully applied to pharmacokinetic study of metoprolol in rabbit blood.  相似文献   

14.
A wall-free detection method based on liquid junction in a capillary gap was proposed for laser-induced fluorescence (LIF) of capillary electrophoresis (CE). The capillary gap of the wall-free cell was fabricated by etching a 10-mm × 50-μm I.D. fused-silica capillary to obtain a polyimide coating sleeve, decoating about 6 mm at one end of both 50 μm I.D. separation and liquid junction capillary, inserting the treated capillary ends into the coating sleeve oppositely, fixing the capillaries with a gap distance of 140 μm by epoxy glue and removing the coating sleeve by burning. The theoretical model, experimental results and wall-free cell images indicated that the gap distance and applied voltage were main influence factors on the wall-free detection. Since the wall-free cell increased the absorption light path and avoided the stray light from the capillary wall, it improved the ratio of signal to noise and limit of detection (LOD) of CE-LIF. Three flavin compounds of riboflavin (RF), flavin mononucleotide sodium (FMN) and flavin adenine dinucleotide disodium (FAD) were used to evaluate the wall-free detection method. Compared with on-column cell, the LODs of the wall-free cell were improved 15-, 6- and 9-fold for RF, FMN and FAD, respectively. The linear calibration concentrations of the flavins ranged from 0.005 to 5.0 μmol/L. The column efficiency was in the range from 1.0 × 105 to 2.5 × 105 plates. The wall-free detection of CE-LIF was applied to the analysis of the flavins in spinach and lettuce leaves.  相似文献   

15.
A simple and compact fluorescence excitation source was prepared using a 405 nm blue laser diode module and characterized in capillary electrochromatographic or capillary electrophoretic microchip separation. An inexpensive blue laser diode module with a tiny focusing lens was simply mounted at the center of an aluminum block on a miniature linear motion guide for heat dissipation and position control. A slit unit has a series of fifteen laser-machined slits with 1 mm space along the direction of the separation channel of the microchip above this unit. The laser beam was focused through a slit with 50 μm width to the separation channel at the position of a desired length. Although the excitation source unit was connected to a simple current controlled power supply, it was stable with 0.1% drift per hour and 1.3% (1σ) fluctuation in intensity. This simple excitation source can be prepared easily with inexpensive minimum optical components and mounted with a microchip on the stage of an ordinary fluorescence microscope for daily separation studies using a CE or CEC microchip. The applicability of the excitation source was evaluated with FITC-amino acid derivative mixtures using a polymer based CEC microchip packed fully with submicron silica beads in its microchannel.  相似文献   

16.
The detection and quantification of disease-related proteins play critical roles in clinical practice and diagnostic assays. We present an affinity probe capillary electrophoresis/laser-induced fluorescence polarization (APCE/LIFP) assay for detection of human thrombin using a specific aptamer as probe. In the APCE/LIFP assay, the mobility and fluorescence polarization of complex are measured simultaneously during CE analysis. The affinity complex of human thrombin can be well separated from unbound aptamer on CE and clearly identified on the basis of its fluorescence polarization and migration. Because of the binding favorable G-quartet conformation potentially involved in the specific aptamer, it was assumed that monovalent and bivalent cations promoting the formation of a stable G quadruplex conformation in the aptamer may enhance the binding of the aptamer and thrombin. Therefore, we investigated the effects of various metal cations on the binding of human thrombin and the aptamer. Our results show that cations like K+ and Mg2+ could not stabilize the affinity complex. Without the use of typical cations, a highly sensitive assay of human thrombin was developed with the corresponding detection limits of 4.38 × 10−19 and 2.94 × 10−19 mol in mass for standard solution and human serum, respectively.  相似文献   

17.
In this study the dose-depth distribution pattern of proton beams was investigated by inactivation of human cells exposed to high-LET (linear energy transfer) protons. The proton beams accelerated up to 45 MeV were horizontally extracted from the cyclotron, and were delivered to the cells acutely through a home made prototype over a range of physical depths (in the form of a variable water column). The biological systems used here were two in vitro cell lines, including human embryonic kidney cells (HEK 293), and human breast adenocarcinoma cell line (MCF-7). Cells were exposed to unmodulated proton beam radiation at a dose of 50 Gy similar to that used in therapy. Resazurin metabolism assay was investigated for measurement of cell response to irradiation as a simple and non-destructive assay. In the resazurin reduction test the non-fluorescent probe dye is reduced to pink and highly fluorescent resorufin. The dose-depth distribution of proton beam obtained based on the highly sensitive laser-induced fluorometric determination of resorufin was found to coincide well with the data collected using conventional film based dosimetry. The resazurin method yielded data comparable with the optical micrographs of the irradiated cells, showing the least cell survival at the measured Bragg-peak position of 10 mm. In addition, fused silica capillary was used as a sample container to increase the probability for irradiated laser beam to probe and excite resorufin in small sample volume of the capillary. The developed method has the potential to serve as a non-destructive, sample-thrifty, and time saving tool to realize more realistic, practical dose-depth distribution of proton beam compared to conventional in vitro cell viability assessment techniques.  相似文献   

18.
A simple and sensitive sweeping micellar electrokinetic chromatography method coupled with UV laser-induced native fluorescence detection has been developed for quantitative analysis of biogenic amines in biofluids. The background electrolyte comprised 30 mmol L−1 phosphoric acid and 20 mmol L−1 sodium dodecyl sulfate. The concentration limits of detection of analytes using sweeping-micellar electrokinetic chromatography (sweeping-MEKC) were in the range 7–100 nmol L−1, which were 250–3600-fold improvement for dopamine, DOPA and epinephrine compared with conventional capillary zone electrophoresis. An improvement of approximately 20-fold was observed for all analytes compared with typical micellar electrokinetic chromatography conditions. Baseline separation was achieved for the all analytes within 12 min and migration-time and peak-area repeatability were better than RSD 0.35% and 5.68%, respectively. The developed method was applied to measure the biogenic amines in biofluids extracted from wheat phloem sap, human plasma and human urine.  相似文献   

19.
In quest for high sensitivities necessary for determining the disaccharide composition of heparin/heparan sulfate present in trace amounts in biologic samples, an ultrahighly sensitive capillary electrophoresis (CE) method using laser-induced fluorescence (LIF) detection was developed. Heparin/heparan sulfate-derived Delta-disaccharides were derivatized with the fluorophore 2-aminoacridone and resolved by a reversed-polarity CE method. Estimation of the limit of detection in concentration term and limit of quantitation showed that LIF detection of AMAC-derivatives of Delta-disaccharides resulted in 27-744 times higher sensitivity as compared to those detected by UV at 255 nm. These data suggest that CE-LIF is a powerful tool to quantify minute amounts of heparin/heparan sulfate disaccharides.  相似文献   

20.
A rapid method using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was developed to determine free and protein-bound glutathione (GSH) in human HepG2 hepatocarcinoma cells. The samples were derivatized with 5-iodoacetamidofluorescein (5-IAF), and analyzed at 22 kV using sodium phosphate buffer (10mM, pH 11.4) and an uncoated 58 cm x 75 microm I.D. fused silica capillary. The analysis time was less than 10 min and N-acetylcysteine was used as internal standard. The derivatization conditions, such as reaction time, 5-IAF concentration, running buffer and cartridge temperature were optimized. Argon gas was used in the study to prevent the oxidization of GSH during sample preparation. The optimized method required only 30-40 nl sample per analysis and was fast and sensitive. The method was applied to the analyses of HepG2 cells treated with the small metal chelating agent, pyrrolidine dithiocarbamate (PDTC). The results demonstrate that the amount of protein-bound GSH, which reflects the amount of protein S-glutathionylation, increased in a time-dependent manner upon cell treatment with PDTC, reaching a maximum of over 50% increase 2h post-PDTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号