首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏石磊  王媛  郭奇  王洪福  张寿 《中国物理 B》2012,21(4):44205-044205
We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr nonlinearity, and homodyne measurement, therefore it is feasible with current experimental technology. The success probability of our protocol is optimal, this property makes our protocol more efficient than others in the applications of quantum communication.  相似文献   

2.
东晨  赵尚弘  董毅  赵卫虎  赵静 《物理学报》2014,63(17):170303-170303
本文提出了一种基于旋转不变态的偏振无关测量设备量子密钥分配协议,既适用于偏振编码测量设备无关量子密钥分配系统,也应用于相位编码测量设备无关量子密钥分配系统的相干过程.通过在线偏振基进入信道传输前嵌入2块q玻片,使得在传输过程中将线偏振基转化为旋转不变的圆偏振基,而第三方对接收到的脉冲进行Bell态测量前,利用q玻片的算符可逆性,将圆偏振基还原为线偏振基进行测量,可以有效消除信道传输中偏振旋转导致的误码.本文分析了偏振无关的三诱骗态测量设备无关量子密钥分配系统的误码率,研究了密钥生成率与安全传输距离的关系,仿真结果表明,对于偏振编码测量设备无关量子密钥分配系统,该协议可以有效提高系统的最大安全通信距离,为实用的量子密钥分配实验提供了重要的理论参数.  相似文献   

3.
Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal decoy state protocol with a heralded single photon source (HSPS) for QKD is presented. The protocol is based on 4 states with different intensities. i.e. one signal state and three decoy states. The signal state is for generating keys; the decoy states are for detecting the eavesdropping and estimating the fraction of single-photon and two-photon pulses. We have discussed three cases of this protocol, i.e. the general case, the optimal case and the special case. Moreover, the final key rate over transmission distance is simulated. For the low dark count of the HSPS and the utilization of the two-photon pulses, our protocol has a higher key rate and a longer transmission distance than any other decoy state protocol.  相似文献   

4.
The novel experimental realization of three-level optical quantum systems is presented. We use the polarization state of biphotons to generate a specific sequence of states that are used in the extended version of four-state QKD protocol quantum key distribution protocol. We experimentally verify the orthogonality of the basic states and demonstrate the ability to easily switch between them. The tomography procedure is employed to reconstruct the density matrices of generated states.  相似文献   

5.
Hua-Li Zhang 《中国物理 B》2022,31(5):50309-050309
A rational quantum state sharing protocol with the semi-off-line dealer is proposed. Firstly, the dealer Alice shares an arbitrary two-particle entangled state with the players by Einstein-Podolsky-Rosen (EPR) pairs and Greenberger-Horne-Zeilinger (GHZ) states. The EPR pairs are prepared by Charlie instead of the dealer, reducing the workload of the dealer. Secondly, all players have the same probability of reconstructing the quantum state, guaranteeing the fairness of the protocol. In addition, the dealer is semi-off-line, which considerably reduces the information exchanging between the dealer and the players. Finally, our protocol achieves security, fairness, correctness, and strict Nash equilibrium.  相似文献   

6.
司斌  苏石磊  孙立莉  程留永  王洪福  张寿 《中国物理 B》2013,22(3):30305-030305
We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single-photon resource to assist the concentration in each step,which makes this protocol more economical.With the help of the linear optical elements and weak cross-Kerr nonlinearity,one can obtain a maximally-entangled cluster state via local operations and classical communication.Moreover,the protocol can be iterated to obtain a higher success probability and is feasible under current experimental conditions.  相似文献   

7.
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.  相似文献   

8.
We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state. The text was submitted by the author in English.  相似文献   

9.
周媛媛  周学军 《物理学报》2011,60(10):100301-100301
基于改造的弱相干态光源,提出了一种非正交编码被动诱骗态量子密钥分配方案.该方案不主动制备诱骗态,而是根据发送端探测器是否响应,将接收端的探测结果分为响应集合和未响应集合,以此分别作为信号态和诱骗态,并利用这两个集合来估计参量和生成密钥.数值仿真表明,非正交编码被动诱骗态方案的密钥生成效率和安全传输距离都优于现有的被动诱骗态方案,且性能非常接近主动无穷诱骗态方案的理论极限值;未响应集合对密钥生成的参与使方案性能免受发送端探测效率的影响,弥补了实际探测器探测效率低下的缺陷;由于不需要主动制备诱骗态,该方案实现非常简单,适用于高速量子密钥分配的场合. 关键词: 量子光学 量子密钥分配 被动诱骗态 密钥生成效率  相似文献   

10.
We characterize the class of remote state preparation (RSP) protocols that use only forward classical communication and entanglement, deterministically prepare an exact copy of a general state, and do so obliviously-without leaking further information about the state to the receiver. We prove that any such protocol can be modified to require from the sender only a single specimen of the state, without increasing the classical communication cost. This implies Lo's conjectured lower bound on the cost for these protocols. We relate our RSP protocols to the private quantum channels and establish a one-to-one correspondence between them.  相似文献   

11.
In this paper we present a quantum secure direct communication protocol based on four-particle cluster states. In our protocol both the sender and the receiver keep two particles of the cluster state, and we verify that our protocol can prevent the eavesdropper from intercepting valid messages. Meanwhile, we also analyze our protocol in a lossy channel under the attack of an eavesdropper. We show that both the communication efficiency and the qubit-utilization ratio are improved compared with other existing schemes.  相似文献   

12.
《Physics letters. A》2020,384(12):126351
A theoretical scheme to realize quantum state transfer and state storage in a uniformly coupled tight-binding chain is introduced in this paper. Two controllable gate voltages acting as local barriers are applied onto specific sites of the system, which separate the chain into three regions. By setting two gate voltages being equal, we show that an initially localized quantum wave packet undergoes perfect periodic revivals, allowing for perfect quantum state transfer between two nonadjacent spatial regions of the system. We also show that the wave packet can be trapped in its initial region by setting two gate voltages being unequal, which relates to the problem of storing quantum information. Moreover an efficient time-dependent quantum state transfer protocol is presented by smoothly varying the two gate voltages. Significantly, in our setup, the transferred state can be trapped, with a high fidelity of storage, at the end of the transfer protocol.  相似文献   

13.
Motivated by protocols [G. Gordon, G. Rigolin, Phys. Rev. A 73 (2006) 062316] and [N.B. An, G. Mahler, Phys. Lett. A 365 (2007) 70], we propose a linear optical protocol for quantum state sharing of polarization entangled state in terms optical elements. Our protocol can realize a near-complete quantum state sharing of polarization entangled state with arbitrary coefficients, and it is possible to achieve unity fidelity transfer of the state if the parties collaborate. This protocol can also be generalized to the multi-party system.  相似文献   

14.
Based on Coulomb blockade, we propose a scheme to generate two types of three-qubit entanglement, known as Greenberg-Horne-Zeilinger (GHZ) state and W state, in a macroscopic quantum system. The qubit is encoded in the charge qubit in the superconducting system, and the scheme can be generalized to generate the GHZ state and W state in multi-partite charge qubits. The GHZ state and W state are the eigenstates of the respective idle Hamiltonian, so they have the long lifetime.  相似文献   

15.
We present an experimentally feasible protocol for implementing controlled dense coding by using a three-atom GHZ-type state in cavity quantum electrodynamics (QED). In cavity QED system, we have proposed to generate a three-atom GHZ-type state and demonstrated that the probability of implementing controlled dense coding is 100 %. In addition, our approach can be realized with present cavity QED techniques.  相似文献   

16.
Logic qubit plays an important role in current quantum communication. In this paper, we propose an efficient entanglement concentration protocol (ECP) for a new kind of logic Bell state, where the logic qubit is the concatenated Greenber–Horne–Zeilinger (C-GHZ) state. Our ECP relies on the nondemolition polarization parity check (PPC) gates constructed with cross-Kerr nonlinearity, and can distill one pair of maximally entangled logic Bell state from two same pairs of less-entangled logic Bell states. Benefit from the nondemolition PPC gates, the concentrated maximally entangled logic Bell state can be remained for further application. Moreover, our ECP can be repeated to further concentrate the less-entangled logic Bell state. By repeating the ECP, the total success probability can be effectively increased. Based on above features, this ECP may be useful in future long-distance quantum communication.  相似文献   

17.
焦荣珍  张文翰 《物理学报》2009,58(4):2189-2192
采用包含两个伪态和一个信号态的双伪态协议分析了量子密钥分配系统的性能,比较了双伪态(真空态—弱伪态)和单伪态协议条件下密钥生成率与通信距离的关系,分析了信号态的强度、量子比特误码率、单光子的增益和单光子的误码率对系统密钥生成率的影响,得出密钥生成率的最优化条件,为实现实用安全的量子密钥分配系统奠定理论基础. 关键词: 伪态协议 量子密钥生成率 量子比特误码率  相似文献   

18.
We describe a protocol for generation of remote multi-photon entanglement using Einstein-Podolsky-Rosen (EPR) photon pairs via entanglement swapping. According to the requests of users, Quantum Switch (QS) can prepare three-photon W entangled states or Greenberger-Horne-Zeilinger (GHZ) states based on independent, spatially separated EPR pairs among three distant users. Only Bell states measurement (BSM) is needed utilizing a CPHASE gate and PAs. This protocol can also generate remote N-photon GHZ entangled states.  相似文献   

19.
何娟  叶柳  倪致祥 《中国物理 B》2008,17(5):1597-1600
An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.  相似文献   

20.
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger–Horne–Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号