首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High-resolution solid-state NMR (SSNMR) of paramagnetic systems has been largely unexplored because of various technical difficulties due to large hyperfine shifts, which have limited the success of previous studies through depressed sensitivity/resolution and lack of suitable assignment methods. Our group recently introduced an approach using "very fast" magic angle spinning (VFMAS) for SSNMR of paramagnetic systems, which opened an avenue toward routine analyses of small paramagnetic systems by (13)C and (1)H SSNMR [Y. Ishii et al., J. Am. Chem. Soc. 125, 3438 (2003); N. P. Wickramasinghe et al., ibid. 127, 5796 (2005)]. In this review, we discuss our recent progress in establishing this approach, which offers solutions to a series of problems associated with large hyperfine shifts. First, we demonstrate that MAS at a spinning speed of 20 kHz or higher greatly improves sensitivity and resolution in both (1)H and (13)C SSNMR for paramagnetic systems such as Cu(II)(DL-alanine)(2)H(2)O (Cu(DL-Ala)(2)) and Mn(acac)(3), for which the spectral dispersions due to (1)H hyperfine shifts reach 200 and 700 ppm, respectively. Then, we introduce polarization transfer methods from (1)H spins to (13)C spins with high-power cross polarization and dipolar insensitive nuclei enhanced by polarization transfer (INEPT) in order to attain further sensitivity enhancement and to correlate (1)H and (13)C spins in two-dimensional (2D) SSNMR for the paramagnetic systems. Comparison of (13)C VFMAS SSNMR spectra with (13)C solution NMR spectra revealed superior sensitivity in SSNMR for Cu(DL-Ala)(2), Cu(Gly)(2), and V(acac)(3). We discuss signal assignment methods using one-dimensional (1D) (13)C SSNMR (13)C-(1)H rotational echo double resonance (REDOR) and dipolar INEPT methods and 2D (13)C(1)H correlation SSNMR under VFMAS, which yield reliable assignments of (1)H and (13)C resonances for Cu(Ala-Thr). Based on the excellent sensitivity/resolution and signal assignments attained in the VFMAS approach, we discuss methods of elucidating multiple distance constraints in unlabeled paramagnetic systems by combing simple measurements of (13)C T(1) values and anisotropic hyperfine shifts. Comparison of experimental (13)C hyperfine shifts and ab initio calculated shifts for alpha- and beta-forms of Cu(8-quinolinol)(2) demonstrates that (13)C hyperfine shifts are parameters exceptionally sensitive to small structural difference between the two polymorphs. Finally, we discuss sensitivity enhancement with paramagnetic ion doping in (13)C SSNMR of nonparamagnetic proteins in microcrystals. Fast recycling with exceptionally short recycle delays matched to short (1)H T(1) of approximately 60 ms in the presence of Cu(II) doping accelerated 1D (13)C SSNMR for ubiquitin and lysozyme by a factor of 7.3-8.4 under fast MAS at a spinning speed of 40 kHz. It is likely that the VFMAS approach and use of paramagnetic interactions are applicable to a variety of paramagnetic systems and nonparamagnetic biomolecules.  相似文献   

2.
Novel 1D and multidimensional solid-state NMR (SSNMR) methods using very fast magic-angle spinning (VFMAS) (spinning speed > 20 kHz) for performing 13C high-resolution SSNMR of paramagnetic organometallic complexes are discussed. VFMAS removes a majority of 13C-1H and 1H-1H dipolar couplings, which are often difficult to remove by RF pulse techniques in paramagnetic complexes because of large paramagnetic shifts. In the first systematic approach using the unique feature of VFMAS for paramagnetic complexes, we demonstrate a means of obtaining well-resolved 1D and multidimensional 13C SSNMR spectra, sensitivity enhancements via cross polarization, and signal assignments, and applications of dipolar recoupling methods for nonlabeled paramagnetic organometallic complexes of moderate paramagnetic shifts ( approximately 800 ppm). Experimental results for powder samples of small nonlabeled coordination complexes at 1H frequencies of 400.2-400.3 MHz show that highly resolved 13C SSNMR spectra can be obtained under VFMAS, without requirements of 1H decoupling. Sensitivity enhancement in 13C SSNMR via cross polarization from 1H spins was demonstrated with an amplitude-sweep high-power CP sequence using strong RF fields ( approximately 100 kHz) available in the VFMAS probe. 13C CPMAS spectra of nonlabeled Cu(II)(dl-alanine)2.(H2O) and V(III)(acetylacetonate)3 (V(acac)3) show that it is possible to obtain high-resolution spectra for a small quantity ( approximately 15 mg) of nonlabeled paramagnetic organometal complexes within a few minutes under VFMAS. Experiments on Cu(II)(dl-alanine)2.(H2O) demonstrated that 1H-13C dipolar recoupling for paramagnetic organometal complexes can be performed under VFMAS by application of rotor-synchronous pi-pulses to 1H and 13C spins. The results also showed that signal assignments for 13CH, 13CH3, and 13CO groups in paramagnetic complexes are possible on the basis of the amount of 13C-1H dipolar dephasing induced by dipolar recoupling. Furthermore, the experimental 2D 13C/1H chemical-shift correlation NMR spectrum obtained for nonlabeled V(acac)3 exhibits well-resolved lines, which overlap in 1D 13C and 1H spectra. Signals for different chemical groups in the 2D spectrum are distinguished by the 13C-1H dipolar dephasing method combined with the 2D 13C/1H correlation NMR. The assignments offer information on the existence of nonequivalent ligands in the coordination complex in solids, without requiring a single-crystal sample.  相似文献   

3.
High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR) for paramagnetic systems. Spinning-speed dependence of 1H MAS spectra showed that very fast MAS (VFMAS) at 24-28 kHz enhanced sensitivity by a factor of 12-18, compared with the sensitivity of 1H SSNMR spectra under moderate MAS at 10 kHz, for Cu(dl-alanine)2.H2O and Mn(acac)3, for which the spectral ranges due to 1H paramagnetic shifts reach 200 and 1000 ppm, respectively. It was theoretically and experimentally confirmed that the absolute sensitivity of 1H VFMAS for small paramagnetic complexes such as Cu(dl-alanine)2 can be an order of magnitude higher than that of equimolar diamagnetic ligands because of short 1H T1 ( approximately 1 ms) of the paramagnetic systems and improved sensitivity under VFMAS. On the basis of this demonstrated high sensitivity, 1H SSNMR micro analysis of paramagnetic systems in a nanomole scale is proposed. Applications were performed on two polymorphs of Cu(II)(8-quinolinol)2, which is a suppressor of human cancer cells. It was demonstrated that 1H VFMAS SSNMR spectra accumulated for 20 nmol of the polycrystalline samples in 10 min enabled one to distinguish alpha- and beta-forms of Cu(II)(8-quinolinol)2 on the basis of shift positions and line widths.  相似文献   

4.
A general protocol for the structural characterization of paramagnetic molecular solids using solid-state NMR is provided and illustrated by the characterization of a high-spin Fe(II) catalyst precursor. We show how good NMR performance can be obtained on a molecular powder sample at natural abundance by using very fast (>30 kHz) magic angle spinning (MAS), even though the individual NMR resonances have highly anisotropic shifts and very short relaxation times. The results include the optimization of broadband heteronuclear (proton-carbon) recoupling sequences for polarization transfer; the observation of single or multiple quantum correlation spectra between coupled spins as a tool for removing the inhomogeneous bulk magnetic susceptibility (BMS) broadening; and the combination of NMR experiments and density functional theory calculations, to yield assignments.  相似文献   

5.
1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution.  相似文献   

6.
The hydrofullerenes C(60)H(2) (1) and C(60)H(6) (2) have been prepared in (13)C-enriched form and 2D INADEQUATE NMR spectra were measured. These spectra have provided unambiguous (13)C assignments for 2, and nearly unambiguous assignments for 1. In both cases, the most downfield resonances are immediately adjacent to the sp(3) carbons, despite the fact that these carbons are the least pyramidalized carbons in the molecule. Typically, (13)C chemical shifts move downfield with increasing pyramidalization (THETA(p)), but in these systems there is no strong correlation between THETA(p) and delta. HF-GIAO calculations are able to predict the chemical shifts, but provide little chemical insight into the origin of these chemical shifts. London theory reveals a significant paramagnetic ring current in 1, a feature that helps explain the (1)H shifts in these compounds and may contribute to the (13)C chemical shifts as well.  相似文献   

7.
We have used density functional theory methods to investigate the solid-state "magic-angle" spinning (MAS) NMR and single-crystal NMR/ENDOR spectra of paramagnetic organometallic complexes and metalloporphyrins. The solid-state MAS NMR chemical shifts (including both diamagnetic and hyperfine contributions) are predicted with a slope of 1.007 and an R2 = 0.967, corresponding to a 28 ppm (or 6.3%) error over the entire 442 ppm range. Single-crystal ENDOR hyperfine values, including both isotropic Fermi contact and dipolar couplings, are predicted with a slope of 1.009 and an R2 = 0.998, corresponding to a 0.93 MHz (or 1.2%) error over the entire 78.37 MHz range. In addition, single-crystal NMR shifts (including both hyperfine terms) are predicted with an R2 = 0.961. The ability to compute solid-state MAS NMR and single-crystal NMR/ENDOR data should facilitate the use of these techniques in investigating paramagnetic metal complexes and should be of particular use in studying paramagnetic metalloproteins, where structures are less accurately known.  相似文献   

8.
1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution.  相似文献   

9.
A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)相似文献   

10.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

11.
The N-terminal SH3 domain of the Drosophila modular protein Drk undergoes slow exchange between a folded (Fexch) and highly populated unfolded (Uexch) state under nondenaturing buffer conditions, enabling both Fexch and Uexch states to be simultaneously monitored. The addition of dissolved oxygen, equilibrated to a partial pressure of either 30 atm or 60 atm, provides the means to study solvent exposure with atomic resolution via 13C NMR paramagnetic shifts in 1H,13C HSQC (heteronuclear single quantum coherence) spectra. Absolute differences in these paramagnetic shifts between the Fexch and Uexch states allow the discrimination of regions of the protein which undergo change in solvent exposure upon unfolding. Contact with dissolved oxygen for both the Fexch and Uexch states could also be assessed through 13C paramagnetic shifts which were normalized based on the corresponding paramagnetic shifts seen in the free amino acids. In the Fexch state, the 13C nuclei belonging to the hydrophobic core of the protein exhibited very weak normalized paramagnetic shifts while those with greater solvent accessible surface area exhibited significantly larger normalized shifts. The Uexch state displayed less varied 13C paramagnetic shifts although distinct regions of protection from solvent exposure could be identified by a lack of such shifts. These regions, which included Phe9, Thr12, Ala13, Lys21, Thr22, Ile24, Ile27, and Arg38, overlapped with those found to have residual nativelike and non-native structures in previous studies and in some cases provided novel information. Thus, the paramagnetic shifts from dissolved oxygen are highly useful in the study of a transient structure or clustering in disordered systems, where conventional NMR measurements (couplings, chemical shift deviations from random coil values, and NOEs) may give little information.  相似文献   

12.
Three labdane diterpenoids were isolated from an acetone extract of Plectranthus ornatus. Their structures, closely related to that of forskolin, were determined by NMR studies. Unambiguous and complete assignments of the 1H and 13C NMR chemical shifts for these substances are presented. The assignments are based on 2D shift-correlated [1H, 1H-COSY, 1H, 13C-gHSQC-1J (C,H), 1H, 13C-gHMBC-(n)J (C,H) (n = 2 and 3)] and NOE experiments.  相似文献   

13.
本文用1H、31P和13C核磁共振谱研究了ATMP(氨基三甲叉膦酸,以简式H6L表示)及其顺磁性Co(Ⅱ)配合物。测定了不同Cco/CATMP摩尔比在不同pH值下的各向同性位移。定性地讨论顺磁性Co(Ⅱ)配合物在不同pH条件下的组成、电荷和空间构型变化对化学位移的影响。运用快速交换反应中化学位移与配合物浓度的关系,确定不同pH下的条件稳定常数。  相似文献   

14.
The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the cosolvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra; however, the changes lead only to correspondingly subtle changes in the spectra. Here, we demonstrate that several formulations of GB1 microcrystals yield very high quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but side chain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying the formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single-crystal growth.  相似文献   

15.
Paramagnetic metal ions can induce molecular alignment with respect to the magnetic field. This alignment generates residual anisotropic chemical shifts (RACS) due to nonisotropic averaging over the molecular orientations. Using a 30 kDa protein-protein complex, the RACS effects are shown to be significant for heteronuclear spins with large chemical shift anisotropies, lanthanide ions with large anisotropic magnetic susceptibility tensors, and measurements at high magnetic field. Therefore, RACS must be taken into account when pseudocontact shifts are measured by comparison of chemical shifts observed between complexes with paramagnetic and diamagnetic lanthanide ions. The results are of particular importance when different pseudocontact shifts measured for the 1HN, 15N, and 13C' spins of a peptide group are used to restrain its orientation with respect to the electronic magnetic susceptibility tensor in structure calculations.  相似文献   

16.
We report the first detailed investigation of the (1)H, (13)C, (15)N, and (19)F nuclear magnetic resonance (NMR) spectroscopic shifts in paramagnetic metalloprotein and metalloporphyrin systems. The >3500 ppm range in experimentally observed hyperfine shifts can be well predicted by using density functional theory (DFT) methods. Using spin-unrestricted methods together with large, locally dense basis sets, we obtain very good correlations between experimental and theoretical results: R(2) = 0.941 (N = 37, p < 0.0001) when using the pure BPW91 functional and R(2) = 0.981 (N = 37, p < 0.0001) when using the hybrid functional, B3LYP. The correlations are even better for C(alpha) and C(beta) shifts alone: C(alpha), R(2) = 0.996 (N = 8, p < 0.0001, B3LYP); C(beta), R(2) = 0.995 (N = 8, p < 0.0001, B3LYP), but are worse for C(meso), in part because of the small range in C(meso) shifts. The results of these theoretical calculations also lead to a revision of previous heme and proximal histidine residue (13)C NMR assignments in deoxymyoglobin which are confirmed by new quantitative NMR measurements. Molecular orbital (MO) analyses of the resulting wave functions provide a graphical representation of the spin density distribution in the [Fe(TPP)(CN)(2)](-) (TPP = 5,10,15,20-tetraphenylporphyrinato) system (S = (1)/(2)), where the spin density is shown to be localized primarily in the d(xz) (or d(yz)) orbital, together with an analysis of the frontier MOs in Fe(TPP)Cl (S = (5)/(2)), Mn(TPP)Cl (S = 2), and a deoxymyoglobin model (S = 2). The ability to now begin to predict essentially all heavy atom NMR hyperfine shifts in paramagnetic metalloporphyrins and metalloproteins using quantum chemical methods should open up new areas of research aimed at structure prediction and refinement in paramagnetic systems in much the same way that DFT methods have been used successfully in the past to predict/refine elements of diamagnetic heme protein structures.  相似文献   

17.
(1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.  相似文献   

18.
Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (approximately 90%) in solution has protohemin oriented as in crystals, with the remaining approximately 10% exhibiting the hemin orientation rotated 180 degrees about the alpha-, gamma-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or pi spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds.  相似文献   

19.
NMR spectra (1H, 13C, 15N) of para- and meta-substituted benzohydroxamic acids were studied in dry dimethyl sulfoxide solutions. The 13C chemical shifts were very close to those found by cross-polarization magic angle spinning in solids, the hydroxamic (not hydroximic) structure of which is unambiguous. The hydroxamic structure of these acids in DMSO solutions was proved independently by their 15N chemical shifts. The 15N and 1H chemical shifts of the NH-OH fragment showed excellent mutual dependences and dependences on the nature of the ring substituent. According to these dependences and ab initio energy calculations, all the acids assume the same Z conformation. Proton exchange between hydroxamic OH and NH groups in DMSO proceeded by both intra- and intermolecular exchange and the rates did not exhibit any simple relationship to the substituent constants.  相似文献   

20.
A detailed analysis with total assignment of (1)H and (13)C NMR spectral data for a cycloheptenone derivative, a key intermediate for the synthesis of perhydroazulene terpenoids, is related. These assignments are based on 1D (1)H and (13)C NMR and on 2D NMR techniques including gCOSY, gHSQC, gHMBC, J-resolved and NOEDIF experiments. The unequivocal assignments were supported by theoretical chemical shifts and scalar coupling constant calculations at GIAO B3LYP/cc-pVDZ level from optimized structures at the same level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号