首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研究了作为缓冲层的ZnO薄膜在不同的退火时间、退火温度下退火对Si衬底上生长ZnSe膜质量的影响。当溅射有ZnO膜的Si(111)衬底的退火条件变化时,从X射线衍射谱(XRD)和光致发光谱(PL)中可见,ZnSe(111)膜的晶体质量有较大的变化。变温的PL谱表明,Si衬底上生长的具有ZnO缓冲层的ZnSe膜的近带边发射峰起源于自由激子发射。  相似文献   

2.
This study investigated the effects of ZnSe nanoparticles (NPs) on the structural and (linear and nonlinear) optical properties of polyvinyl alcohol (PVA) thin film. Three samples of ZnSe NP-doped PVA thin films with different concentrations of ZnSe were produced on a glass substrate. The ZnSe NPs were synthesized by pulsed laser ablation of the ZnSe bulk target immersed in distilled water using a 1064 nm wavelength and a high frequency pulsed Nd:YAG laser. The optical bandgap energies of the films were extracted from their UV-Vis-NIR absorption spectra. The corresponding energy bandgaps of the nanocomposite films declined as the ZnSe NPs doping concentration increased. X-ray diffraction analysis was used to characterize the crystalline phases of the ZnSe/PVA nanocomposite films. The concentration-dependent nonlinear optical absorption and nonlinear refraction behaviors of the films after exposure to 532-nm nanosecond laser pulses were investigated using the Z-scan technique. The nonlinear absorption response of the films was positive when measured using an open aperture scheme, which was attributed to the two-photon absorption mechanism. In addition, the nonlinear refraction indices had a negative value and they increased as the concentration of ZnSe NPs in the films increased.  相似文献   

3.
姜海青  姚熹  车俊  汪敏强 《物理学报》2006,55(4):2084-2091
采用溶胶-凝胶工艺与原位生长技术,制备了ZnSe/SiO2复合薄膜.X射线衍射分 析表明薄膜中ZnSe晶体呈立方闪锌矿结构.X射线荧光分析结果显示薄膜中Zn与Se摩尔比为1 ∶1.01—1∶1.19.利用场发射扫描电子显微镜观察了复合薄膜的表面形貌,结果表明复合薄 膜表面既存在尺寸约为400nm的ZnSe晶粒,也存在尺寸小于100nm的ZnSe晶粒.利用椭偏仪测 量了薄膜椭偏角Ψ,Δ与波长λ的关系,采用Maxwell-Garnett有效介质理论对薄膜的光学 常数、厚度、气孔率、ZnS 关键词: 2复合薄膜')" href="#">ZnSe/SiO2复合薄膜 光学性质 椭偏光度法 荧光光谱  相似文献   

4.
Zinc Selenide (ZnSe) thin films were deposited onto well cleaned glass substrates using vacuum evaporation technique under a vacuum of 3×10−5 mbar. The prepared ZnSe samples were implanted with mass analyzed 75 keV B+ ions at different doses ranging from 1012 to 1016 ions cm−2. The composition, thickness, microstructures, surface roughness and optical band gap of the as-deposited and boron-implanted films were studied by Rutherford backscattering (RBS), grazing incidence X-ray diffraction, Atomic force microscopy, Raman scattering and transmittance measurements. The RBS analysis indicates that the composition of the as-deposited and boron-implanted films is nearly stoichiometric. The thickness of the as-deposited film is calculated as 230 nm. The structure of the as-deposited and boron-implanted thin films is cubic. It is found that the surface roughness increases on increasing the dose of boron ions. In the optical studies, the optical band gap value decreases with an increase of boron concentration. In the electrical studies, the prepared device gave a very good response in the blue wavelength region.  相似文献   

5.
This paper presents the chemical bath deposition of zinc selenide (n-ZnSe) nanocrystalline thin films on non-conducting glass substrates, in an aqueous alkaline medium using sodium selenosulphate as Se2− ion source. The X-ray diffraction studies show that the deposited ZnSe material is nanocrystalline with a mixture of hexagonal and cubic phase. The direct optical band gap ‘Eg’ for the as-deposited n-ZnSe films is found to be 3.5 eV. TEM studies show that the ZnSe nanocrystals (NCs) are spherical in shape. Formation of ZnSe has been confirmed with the help of infrared (IR) spectroscopy by observing bands corresponding to the multiphonon absorption. We demonstrate the effect of the deposition temperature and reactant concentration on the structural, optical and electrical properties of ZnSe films.  相似文献   

6.
ZnSe thin films have been deposited on high cleaned glass substrate by spray pyrolysis technique within the glass substrate temperature range (400 C to 450 C). The structural properties of ZnSe thin films have been investigated by (XRD) X-ray diffraction techniques. The X-ray diffraction spectra showed that ZnSe thin films are polycrystalline and have a cubic (zinc blende) structure. The most preferential orientation is along the (111) direction for all spray deposited ZnSe films together with orientations in the (220) and (311) planes also being abundant. The film thickness was determined by an interferometric method. The lattice parameter, grain size, microstrain and dislocation densities were calculated and correlated with the substrate temperature (TS). The optical properties of ZnSe thin films have been investigated by UV/VIS spectrometer and the direct band gap values were found to be in the region of 2.65 eV to 2.70 eV. The electrical properties of ZnSe thin films have been investigated using the Van der Pauw method and the high quality ZnSe thin films were observed to develop at 430 C with a resistivity of 56,4×105 ohm cm, a conductivity of 1.77×10-7 (Ω cm)-1 and a hall mobility of 0.53 cm2/Vsec.  相似文献   

7.
This paper reports ZnSe/Co bilayer diluted magnetic semiconductor thin films have been prepared by using thermal evaporation technique. The bilayer DMS thin films were hydrogenated at different pressures (15–45 psi) for a constant time of 30 min. Before and after hydrogenations of these bilayer thin films the electrical, optical and magnetic properties have been investigated. Electrical resistivity and optical band gap were found to be increased with respect to hydrogenation pressure. X-ray diffraction (XRD) and magnetic measurements confirmed the formation of DMS ZnSe/Co bilayer DMS thin films. Raman spectra show the presence of hydrogen in these thin films. Surface topography study of as-grown, annealed and hydrogenated ZnSe/Co bilayer thin films indicates uniform deposition, mixing of layers and increment in roughness at the surface due to hydrogen passivation effect respectively.  相似文献   

8.
ZnSe films were deposited by pulsed laser ablation on a crystalline GaAs substrate and on an amorphous quartz substrate. The deposition process was performed with the same growth parameters. The films were investigated by means of X-ray diffraction, reflectance and photoluminescence spectroscopy. The X-ray diffraction spectra have demonstrated that the films grow in a highly oriented way but having different orientations, i.e. the films deposited on GaAs grow (100)-oriented and the films deposited on quartz grow (111)-oriented. Reflectance spectra as a function of the temperature have been analysed by means of the classical oscillator model, in order to obtain the temperature dependence of the band gap energy. This gives results comparable to those of ZnSe single crystals for ZnSe on GaAs, but it is red-shifted for ZnSe on quartz, because of lattice and thermal strains. The photoluminescence measurements at T = 10 K confirm the better quality of ZnSe deposited on GaAs and show that pulsed laser ablation is a promising technique to grow films having intrinsic luminescence even on an amorphous substrate. Received 29 May 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: giuseppe.perna@ba.infn.it  相似文献   

9.
Structural and optical properties of Zinc Selenide (ZnSe) thin films stacked with multiple Lead Selenide (PbSe) submonolayers (ML) were studied. Thermal evaporation was preferred to produce ZnSe–PbSe thin films with the PbSe ML thickness ranges from 2.5 to 10 nm. Polycrystalline nature of the ZnSe was revealed through high resolution X-ray diffractometer measurement. The development of micro strain at the interfaces with increasing PbSe ML thickness was observed. A cross-sectional TEM image shows well-ordered periodicity and reproducibility of the layer thickness. The enhancement of optical absorption of ZnSe was identified upon stacking of PbSe ML. The evidence for quantum confinement in PbSe ML was revealed by the obtained red shift in band gap (2.5–1.8 eV) values as well as photoluminescence emission at 1,071 nm. The presence of tensile strain in the ZnSe layers upon staking of PbSe ML was discussed by the shift in LO phonon modes in Raman spectra.  相似文献   

10.
We report the room temperature synthesis of zinc selenide (ZnSe) nano crystalline thin film on quartz by using a relatively simple and low cost closed space sublimation process (CSSP). The compatibility of the prepared thin films for optoelectronic applications was assessed by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), Raman spectroscopy, photoluminescence, and Fourier transform infrared spectroscopy (FT-IR). The XRD confirmed that the films were polycrystalline with the preferential orientation along the (111) plane corresponding to the cubic phase (2θ = 27.28 ). The AFM indicated that the ZnSe film presented a smooth and compact morphology with RMS roughness 19.86 nm. The longitudinal optical phonon modes were observed at 247 cm 1 and 490 cm 1 attributed to the cubic structured ZnSe. The Zn-Se stretching band was confirmed by the FT-IR. The microstructure and compositional analysis was made with the SEM. The grain size, dislocation density, and strain calculated were co-related. All these properties manifested a good quality, high stability, finely adhesive, and closely packed structured ZnSe thin film for optoelectronic applications.  相似文献   

11.
Wide bandgap semiconductors such as ZnSe and ZnO have attracted great interest due to their applications in solar cells, light emitting diodes, and lasers. However, these wide bandgap semiconductors are frequently difficult to be doped to heavy concentrations, greatly limiting their application. A substrate holder with a natural temperature gradient was developed for batch growth of films at different deposition temperatures, in order to investigate ZnSe film growth and doping challenges. Thin ZnSe films were grown by pulsed laser deposition and characterized using X-ray diffraction, optical transmission and reflection, Raman spectroscopy, and Energy Dispersive X-ray analysis. Deposition temperature and film stoichiometry (Zn:Se) are shown to be significant factors affecting ZnSe growth and doping. ZnSe films with improved crystallinity have been obtained by enriching with selenium and depositing at an optimized temperature. Heavily p-type ZnSe films with hole concentrations of ~2.7 × 1019 cm?3 and resistivities of ~0.099 Ohm cm have been obtained (compared with previous reports of ~1 × 1018 cm?3 and ~0.75 Ohm cm). The results, which are consistent with previous theoretical prediction of compensating defects in ZnSe films, can help to optimize ZnSe growth conditions and understand doping challenges in wide bandgap semiconductors.  相似文献   

12.
以巯基乙酸作为稳定剂在水相中制备了ZnSe纳米晶,用X射线粉末衍射(XRD)和X射线光电子能谱(XPS)对其进行了表征。用表面活性剂将ZnSe纳米晶从水相中转移到有机相中,使其与聚合物MEH-PPV复合作为发光层,制备了多层电致发光器件Glass/ITO/MEH-PPV∶ZnSe/BCP/Alq3。对ZnSe纳米晶和MEH-PPV薄膜的光致发光谱及其吸收光谱的比较表明ZnSe纳米晶和MEH-PPV之间存在着能量传递,这是导致纳米复合薄膜的光致发光光谱和电致发光光谱存在差异的原因之一。文章对其在光激发和载流子注入条件下的不同发光机制进行了讨论。通过对器件的光电特性进行研究,发现ZnSe纳米晶发光的比例随着外加电压的增加而增加,而且器件的I-V特性基本上符合二极管的特性。  相似文献   

13.
The II-VI compound semiconductor, ZnSe having wide band gap between 2.58 and 2.82 eV is a promising material for use in photovoltaic devices, blue light emitting diodes and laser diodes. Several methods have been used to prepare ZnSe thin films. We have deposited ZnSe films on ultra-clean glass substrate by sintering technique. The optical, structural and electrical properties of ZnSe thin films have been examined. The optical band gap of these films is studied using reflection spectra in wavelength range 325-600 nm and structure of these films is studied using XRD. The DC conductivity of the films was measured in vacuum by two-probe technique.Sintering is a very simple and viable method compared to other intensive methods. The results of the present investigation will be useful in characterizing the material ZnSe for its applications in photovoltaics.  相似文献   

14.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

15.
ZnSe thin films were deposited onto Corning glass and silicon substrates using thermal evaporation. The samples were prepared at different substrate temperatures. The thin films’ surface chemical composition was determined through Auger electron spectroscopy (AES). AES signals corresponding to Zn and Se were only detected in AES spectra. The samples’ crystallographic structure was studied through X-ray diffraction. The material crystallised in the cubic structure with preferential orientation (111). Optical properties of the ZnSe films were studied over two energy ranges via electron energy loss spectroscopy (10–90 eV) and spectral transmittance measurements (0.4–4 eV). In both cases, the spectral variation of the refractive index and the absorption coefficient were determined by fitting the experimental results with well-established theoretical models. Experimental values for the material’s gap were also found, and photoconductivity (PC) measurements were carried out. Transitions between bands, usually labelled ΓV8 → ΓC6 and ΓV7 → ΓC6, were found in the optical and PC responses. A wide spectral photoconductive response between 300 and 850 nm was found in the ZnSe/Si samples prepared at 250 °C substrate temperature.  相似文献   

16.
杨宝均  田华 《发光学报》1990,11(4):239-248
本文叙述了在GaAs衬底上用有机金属气相外延(OMVPE)法生长单晶ZnSe薄膜的方法。研究了生长温度,硒锌比对外延膜光电性能的影响。发现生长温度在285℃可以得到表面光亮、结晶性好、低阻、高迁移率、深中心浓度低的外延层。以光泵浦作激发研究了OMVPE ZnSe薄膜的受激发射性质并测量其光学增益。利用ZnSe/GaAs的自然解理面形成的光反馈腔制成了激光器。该激光器的工作温度可以延续到150K。  相似文献   

17.
Poly(vinylalcohol)/phosphotungstic acid (PVA/PWA) nanocomposite films were studied using Fourier-transform infrared and electron absorption spectroscopy. It was found that entrapping PWA into PVA leads to the formation of hydrogen bonds between OH groups of PVA and bridging oxygen atoms of PWA. Terminal oxygen atoms of PWA do not participate in hydrogen-bonding interactions with the polymer. Exposure of the nanocomposite film to UV radiation results both in the photo-induced transfer of protons from PVA to PWA with their attachment to the bridging oxygen atoms of PWA and in the formation of a PVA–PWA complex with the participation of deprotonated oxygen atoms of PVA and the terminal oxygen atoms of PWA. The UV irradiation causes the films to turn blue and a band of d–d transitions of W5+ ions (480 nm) and two bands of intervalence W5+ → W6+ charge-transfer transitions (740 and 1250 nm) to appear in their electronic spectrum.  相似文献   

18.
CdSe/ZnSe/ZnS多壳层结构量子点的制备与表征   总被引:2,自引:0,他引:2       下载免费PDF全文
展示了一种简捷的多壳层量子点合成路线。在含有过量Se源的CdSe体系中直接注入Zn源,"一步法"合成了CdSe/ZnSe量子点;进一步以CdSe/ZnSe为"核",表面外延生长ZnS壳层制备了核/壳/壳结构CdSe/ZnSe/ZnS量子点。相对于以往报道的多壳层结构量子点的制备方法,该方法通过减少壳层的生长步骤有效地简化了实验操作,缩短了实验周期,同时减少对原料的损耗。对量子点进行高温退火处理,能够大幅提高CdSe/ZnSe/ZnS量子点的发光量子产率。透射电镜、XRD以及光谱研究表明:所制备的量子点接近球形,核与壳层纳米晶均为闪锌矿结构,最终获得的CdSe/ZnSe/ZnS量子点的光致发光量子产率达到53%。为了实现量子点的表面生物功能化,通过巯基酸进行了表面配体交换修饰,使量子点表面具有水溶性的羧基功能团,并且能够维持较高的光致发光量子产率。  相似文献   

19.
Formation of linear polyenes–(CH=CH)n–via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain (n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10–12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.  相似文献   

20.
ZnSe(ZnS)纳米晶与MEH-PPV的共掺有机电致发光器件   总被引:1,自引:1,他引:0       下载免费PDF全文
采用水相法合成核壳结构ZnSe/ZnS 纳米晶,经X射线衍射(XRD)分析和透射电子显微镜(TEM)表征,证实所制备的样品为立方晶型闪锌矿结构ZnSe/ZnS量子点。按照一定的质量比将ZnSe/ZnS 纳米晶和有机聚合物MEH-PPV(poly ) 共掺并将其作为发光层,分别制备单层和多层有机电致发光器件,结构为ITO/MEH-PPV∶ZnSe(ZnS)(50 nm)/Al和 ITO/PEDOT∶PSS(70 nm)/ MEH-PPV∶ZnSe(ZnS)(50 nm)/BCP(15 nm)/Alq3(12 nm) /LiF(0.5 nm)/Al。实验结果表明,多层发光器件的发光特性与单层器件不同,工作电压的增大使其发光峰发生了明显的蓝移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号