首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning PIV is applied to a laminar separation bubble to investigate the spanwise structure and dynamics of the roll-up of vortices within the bubble. The laminar flow separation with turbulent reattachment is studied on the suction side of an airfoil SD7003 at Reynolds numbers of 20,000–60,000. The flow is recorded with a CMOS high-speed camera in successive light-sheet planes over a time span of 1–2 s to resolve the temporal evolution of the flow in the different planes. The results show the quasi-periodic development of large vortex-rolls at the downstream end of the separation bubble, which have a convex structure and an extension of 10–20% chord length in the spanwise direction. These vortices possess an irregular spanwise pattern. The evolution process of an exemplary vortex structure is shown in detail starting from small disturbances within the separation bubble transforming into a compact vortex at the downstream end of the separation bubble. As the vortex grows in size and strength it reaches a critical state that leads to an abrupt burst of the vortex with a large ejection of fluid into the mean flow.  相似文献   

2.
A phase discrimination method for two-phase PIV is presented that is capable of simultaneously separating the two phases from time-resolved stereoscopic PIV images taken in a particle-laden jet. The technique developed expands on previous work done by Khalitov and Longmire (Exp Fluids 32:252–268, 2002), where by means of image processing techniques, a raw two-phase PIV image can be separated into two single-phase images according to particle size and intensity distributions. The technique is expanded through the use of three new image processing algorithms to separate particles of similar size (up to an order of magnitude better than published work) for fields of view much larger than previously considered. It also addresses the known problem of noisy background images produced by high-speed CMOS cameras, which makes the particle detection and separation from the noisy background difficult, through the use of a novel fast Fourier transform background filter.  相似文献   

3.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

4.
The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. We present here a large-eddy simulation investigation of the interaction between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on shock/turbulent boundary layer interactions, we have used an inflow technique which does not introduce any energetically significant low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement with the experimental findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was related to the global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions.   相似文献   

5.
The spatio-temporal dynamics of an impinging shock/boundary layer interaction at Mach 2 and under incipient separation conditions, has been investigated experimentally by means of high-speed particle image velocimetry (PIV). The available PIV acquisition rate of up to 20 kHz permits a time-resolved characterization of the interaction. The dynamics of different flow regions—notably the separation region and the reflected shock—were quantified by means of temporal auto-correlation fields and pseudo-spectral analysis. The PIV data further enable to investigate the relationship between spatially extended flow features, such as shock position and bubble size, as well as the influence of the upstream boundary layer. The results confirm earlier studies that there is an important upstream effect on the present incipient interaction.  相似文献   

6.
The three-dimensional flow that develops around a finite flapping wing is investigated using a tomographic scanning PIV technique. The acquisition and correlation processes employed to achieve such measurements have been carefully validated. Issues regarding the relevant timescales of the flow and the spanwise space-resolution are addressed. Results obtained on a hovering flapping wing whose plunging phase is described by a rectilinear motion highlight the influence of the free end condition and the formation of the tip vortex on the leading edge vortices behavior, wing/wake interactions, and wake stabilization.  相似文献   

7.
A laminar separation bubble occurs on the suction side of the SD7003 airfoil at an angle of attack α =  4–8° and a low Reynolds number less than 100,000, which brings about a significant adverse aerodynamic effect. The spatial and temporal structure of the laminar separation bubble was studied using the scanning PIV method at α =  4° and Re = 60,000 and 20,000. Of particular interest are the dynamic vortex behavior in transition process and the subsequent vortex evolution in the turbulent boundary layer. The flow was continuously sampled in a stack of parallel illuminated planes from two orthogonal views with a frequency of hundreds Hz, and PIV cross-correlation was performed to obtain the 2D velocity field in each plane. Results of both the single-sliced and the volumetric presentations of the laminar separation bubble reveal vortex shedding in transition near the reattachment region at Re = 60,000. In a relatively long distance vortices characterized by paired wall-normal vorticity packets retain their identities in the reattached turbulent boundary layer, though vortices interact through tearing, stretching and tilting. Compared with the restricted LSB at Re = 60,000, the flow at Re = 20,000 presents an earlier separation and a significantly increased reversed flow region followed by “huge” vortical structures.  相似文献   

8.
The effect of gas expansion on the velocity of a Taylor bubble was studied experimentally. The velocity field in the liquid ahead of a Taylor bubble was measured by particle image velocimetry (PIV), and the bubble velocity was measured with two pairs of laser diodes and photocells. The experiments were done in a 7.0 m long vertical tube with a 32 mm internal diameter. Solutions of carboxymethylcellulose (CMC) polymer with weight percentages between 0.01% and 0.1% were used. The expansion of slug gas induces an increase in the bubble velocity and a corresponding displacement of the liquid ahead of the bubble. The velocity of the bubble increases by an amount equal to the maximum velocity in the liquid displaced. For the solutions studied, the induced velocity profile was parabolic and the bubble velocity increase was equal to the liquid velocity at the tube axis, i.e., twice the mean velocity in the liquid displaced. The corrected velocity obtained by subtracting the velocity increase from the value of the bubble velocity is independent of the bubble length.  相似文献   

9.
We present a comparative analysis of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) computed from experimental data of a turbulent, quasi 2-D, confined jet with co-flow (Re?=?11,500, co-flow ratio inner-to-outer flow ≈2:1). The experimental data come from high-speed 2-D particle image velocimetry. The flow is fully turbulent, and it contains geometry-dependent large-scale coherent structures; thus, it provides an interesting benchmark case for the comparison between POD and DMD. In this work, we address issues related to snapshot selections (1), convergence (2) and the physical interpretation (3) of both POD and DMD modes. We found that the convergence of POD modes follows the criteria of statistical convergence of the autocovariance matrix. For the computation of DMD modes, we suggest a methodology based on two criteria: the analysis of the residuals to optimize the sampling parameters of the snapshots, and a time-shifting procedure that allows us to identify the spurious modes and retain the modes that consistently appear in the spectrum. These modes are found to be the ones with nearly null growth rate. We then present the selected modes, and we discuss the way POD and DMD rank them. POD analysis reveals that the most energetic spatial structures are related to the large-scale oscillation of the inner jet (flapping); from the temporal analysis emerges that these modes are associated with a low-frequency peak at St?=?0.02. At this frequency, DMD identifies a similar mode, where oblique structures from the walls appear together with the flapping mode. The second most energetic group of modes identified is associated with shear-layer oscillations, and to a recirculation zone near the inner jet. Temporal analysis of these modes shows that the flapping of the inner jet might be sustained by the recirculation. In the DMD, the shear-layer modes are separated from the recirculation modes. These have large amplitudes in the DMD. In conclusion, the DMD modes with eigenvalues on the unit circle are found to be similar to the most energetic POD modes, although differences appear due to the fact that DMD isolates structures associated with one frequency only.  相似文献   

10.
An array of microphones is used to study the space–time characteristics of the wall-pressure field beneath a forced separation bubble downstream of an axi-symmetric backward-facing step. To excite the flow, an externally driven Helmholtz resonator is employed. A unique aspect of the present study is the utilization of an amplitude-modulated forcing scheme in order to avoid contamination of the measured hydrodynamic pressure fluctuations by acoustic radiation from the forcing device. The results lead to the hypothesis that the optimal forcing frequency is achieved when the forced disturbance originates near the center of the unforced separation bubble in the limit of very low levels of forcing. Moreover, a frequency–wavenumber spectrum analysis highlights the possibility for achieving separation control while minimizing potential acoustic radiation due to coupling between the forced disturbance and resonant modes of the underlying surface.  相似文献   

11.
12.
When a laminar boundary layer separates because of an adverse streamwise pressure gradient, the flow is subject to increased instability with respect to small-amplitude disturbances. Laminar–turbulent transition occurs under a rapid three-dimensional (3D) development within the separated shear layer. When the following turbulent boundary layer reattaches, a laminar separation bubble is formed. To allow controlled measurements, a small-amplitude Tollmien–Schlichting wave (TS wave) was introduced into the boundary layer without (case I) and with (case II) spanwise forcing of steady 3D disturbances. Combined application of laser-Doppler anemometry (LDA) and particle image velocimetry (PIV) demonstrates the suitability of both measurement techniques to capture the development of unsteady, periodic phenomena. The transition mechanism occurring in the flow field under consideration is discussed, and results obtained by controlled measurements are compared to direct numerical simulations (DNS) and predictions from linear stability theory (LST). Flow visualizations and stereoscopic PIV measurements give better insight into the 3D breakdown of the separated shear layer.Nomenclature a amplitude - f0 fundamental frequency - H12 boundary layer shape factor, H12=1/2 - h wavenumber coefficient in time - k wavenumber coefficient in the spanwise direction - l liter - m meter - Rex Reynolds number based on streamwise distance of the leading edge - Re1 Reynolds number based on the displacement thickness 1 - s second - t time - u freestream velocity - u velocity at the boundary layer edge - u,v,w velocities - u,v velocity fluctuations - x streamwise coordinate - y wall-normal coordinate - z spanwise coordinate - boundary layer thickness - 1 boundary layer displacement thickness - 2 boundary layer momentum thickness - z spanwise wavelength - phase angle  相似文献   

13.
PIV measurements of a microchannel flow   总被引:24,自引:0,他引:24  
 A particle image velocimetry (PIV) system has been developed to measure velocity fields with order 1-μm spatial resolution. The technique uses 200 nm diameter flow-tracing particles, a pulsed Nd:YAG laser, an inverted epi-fluorescent microscope, and a cooled interline-transfer CCD camera to record high-resolution particle-image fields. The spatial resolution of the PIV technique is limited primarily by the diffraction-limited resolution of the recording optics. The accuracy of the PIV system was demonstrated by measuring the known flow field in a 30 μm×300 μm (nominal dimension) microchannel. The resulting velocity fields have a spatial resolution, defined by the size of the first window of the interrogation spot and out of plane resolution of 13.6 μm× 0.9 μm×1.8 μm, in the streamwise, wall-normal, and out of plane directions, respectively. By overlapping the interrogation spots by 50% to satisfy the Nyquist sampling criterion, a velocity-vector spacing of 450 nm in the wall-normal direction is achieved. These measurements are accurate to within 2% full-scale resolution, and are the highest spatially resolved PIV measurements published to date. Received: 29 October 1998/Accepted: 10 March 1999  相似文献   

14.
15.
The deformation and instability of a low-density spherical bubble induced by an incident and its reflected shock waves are studied by using the large eddy simulation method. The computational model is firstly validated by experimental results from the literature and is further used to examine the effect of incident shock wave strength on the formations and three-dimensional evolutions of the vortex rings. For the weak shock wave case (Ma?=?1.24), the baroclinic effect induced by the reflected shock wave is the key mechanism for the formation of new vortex rings. The vortex rings not only move due to the self-induced effect and the flow field velocity, but also generate azimuthal instability due to the pressure disturbance. For the strong shock wave case (Ma?=?2.2), a boundary layer is formed adjacent to the end wall owing to the approach of vortex ring, and unsteady separation of the boundary layer near the wall results in the ejection and formation of new vortex rings. These vortex rings interact in the vicinity of the end wall and finally collapse to a complicated vortex structure via azimuthal instability. For both shock wave strength cases, the evolutions of vortex rings due to the instability lead to the formation of the complicated structure dominated by the small-scale streamwise vortices.  相似文献   

16.
Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented Φ3.2 m wind tunnel.The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine.The results show that the tip vortex first moves inward for a very short period and then moves out...  相似文献   

17.
Estimating gas holdup via pressure difference measurements is a simple and low-cost non-invasive technique to study gas holdup in bubble columns. It is usually used in a manner where the wall shear stress effect is neglected, termed Method II in this paper. In cocurrent bubble columns, when the liquid velocity is high or the fluid is highly viscous, wall shear stress may be significant and Method II may result in substantial error. Directly including the wall shear stress term in the determination of gas holdup (Method I) requires knowledge of two-phase wall shear stress models and usually requires the solution of non-linear equations. A new gas holdup estimation method (Method III) via differential pressure measurements for cocurrent bubble columns is proposed in this paper. This method considers the wall shear stress influences on gas holdup values without calculating the wall shear stress. A detailed analysis shows that Method III always results in a smaller gas holdup error than Method II, and in many cases, the error is significantly smaller than that of Method II. The applicability of Method III in measuring gas holdup in a cocurrent air–water–fiber bubble column is examined. Analysis based on experimental data shows that with Method III, accurate gas holdup measurements can be obtained, while measurement error is significant when Method II is used for some operational conditions.  相似文献   

18.
PIV measurements of the near-wake behind a sinusoidal cylinder   总被引:2,自引:0,他引:2  
The three-dimensional near-wake structures behind a sinusoidal cylinder have been investigated using a particle image velocimetry (PIV) measurement technique at Re=3,000. The mean velocity fields and spatial distributions of ensemble-averaged turbulence statistics for flows around the sinusoidal and corresponding smooth cylinders were compared. The near-wake behind the sinusoidal cylinder exhibited pronounced spanwise periodic variations in the flow structure. Well-organized streamwise vortices with alternating positive and negative vorticity were observed along the span of the sinusoidal cylinder. They suppress the formation of the large-scale spanwise vortices and decrease the overall turbulent kinetic energy in the near-wake of the sinusoidal cylinder. The sinusoidal surface geometry significantly modifies the near-wake structure and strongly controls the three-dimensional vortices formed in the near-wake.  相似文献   

19.
The present paper presents time-resolved volumetric Particle Tracking Velocimetry measurements in a water towing tank on a SD7003 airfoil, performed at a Reynolds number of 60,000 and a 4° angle of attack. The SD7003 airfoil was chosen because of its long mid-chord and stable laminar separation bubble (LSB), occurring on the suction side of the airfoil at low Reynolds numbers. The present study focuses on the temporal resolution of unsteady large-scale vortex structures emitted from the LSB. In contrast to other studies, where only the observation of the flow in the transition region was examined, the entire flow from the leading edge to the far wake of the airfoil was investigated here.  相似文献   

20.
This study investigates the flow past a confined circular cylinder built into a narrow rectangular duct with a Reynolds number range of 1,500 ≤ Re d ≤ 6,150, by employing the particle image velocimetry technique. In order to better explain the 3-D flow behaviour in the juncture regions of the lower and upper plates and the cylinder, respectively, as well as the dynamics of the horseshoe vortex system, both time-averaged and instantaneous flow data are presented for regions upstream and downstream of the cylinder. The size, intensity and interaction of the vortex systems vary substantially with the Reynolds number. Although the narrow rectangular duct with a single built-in cylinder is a geometrically symmetrical arrrangement, instantaneous flow data have revealed that the flow structures in both the lower and upper plate–cylinder junction regions are not symmetrical with respect to the centreline of the flow passage. The vortical flow structures obtained in side-view planes become dominant sometimes in the lower juncture region and sometimes in the upper juncture region in unsteady mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号