首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The division of flow regimes in a square cylinder wake at various angles of attack (α) is studied. This study provides evidence of the existence of modes A and B instabilities in the wake of an inclined square cylinder. The critical Reynolds numbers for the inception of these instability modes were identified through the determination of discontinuities in the Strouhal number versus Reynolds number curves. The spectra and time traces of wake streamwise velocity were observed to display three distinct patterns in different flow regimes. Streamwise vortices with different wavelengths at various Reynolds numbers were visualized. A PIV technique was employed to quantitatively measure the parameters of wake vortices. The wavelengths of the streamwise vortices in the modes A and B regimes were measured by using the auto-correlation method. From the present investigation, the square cylinder wake at various angles of attack undergoes a similar transition path to that of a circular cylinder, although various quantitative parameters measured which include the critical Reynolds numbers, spanwise wavelength of secondary vortices, and the circulation and vorticity of wake vortices all show an α dependence.  相似文献   

2.
The physical mechanism for generation of streamwise vortices (or rib vortices) in the cylinder wake is numerically investigated with a finite-difference scheme. Rayleigh's theory of centrifugal instability for inviscid axisymmetric flow is extended to analyze the 2-D primary flows. Accordingly, an analytical dimensionless groupRay=−(r/v θ)∂v θ/∂r−1 is derived, wherev θ represents the velocity of a fluid element relative to the oncoming flow,r is the local curvature radius of the element pathline. Centrifugal instability occurs whenRay>0. Stability analyses are carried out with this discriminant for primary flows at different time levels in a half shedding period of the von Kármán (or vK) vortices. Unstable areas are identified and the locations of rib vortices are coincident well with the unstable areas within the first wavelength of vK vortices behind the cylinder. The numerical results also show that rib vortices experience amplification in this region. It is apparent that centrifugal instability plays an important role in the generation of rib vortices in the cylinder wake. The project spported by the National Natural Science Foundation of China  相似文献   

3.
The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height square prism was investigated experimentally in a low-speed wind tunnel. Measurements of the mean drag force and vortex shedding frequency were made at Re=7.4×104 for square prisms of aspect ratios AR=9, 7, 5 and 3. Measurements of the mean wake velocity field were made with a seven-hole pressure probe at Re=3.7×104 for square prisms of AR=9 and 5. The relative thickness of the boundary layer on the ground plane was δ/D=1.5–1.6 (where D is the side length of the prism). The splitter plates were mounted vertically from the ground plane on the wake centreline, with a negligible gap between the leading edge of the plate and rear of the prism. The splitter plate heights were always the same as the heights of prisms, while the splitter plate lengths ranged from L/D=1 to 7. Compared to previously published results for an “infinite” square prism, a splitter plate is less effective at drag reduction, but more effective at vortex shedding suppression, when used with a finite-height square prism. Significant reduction in drag was realized only for short prisms (of AR≤5) when long splitter plates (of L/D≥5) were used. In contrast, a splitter plate of length L/D=3 was sufficient to suppress vortex shedding for all aspect ratios tested. Compared to previous results for finite-height circular cylinders, finite-height square prisms typically need longer splitter plates for vortex shedding suppression. The effect of the splitter plate on the mean wake was to narrow the wake width close to the ground plane, stretch and weaken the streamwise vortex structures, and increase the lateral entrainment of ambient fluid towards the wake centreline. The splitter plate has little effect on the mean downwash. Long splitter plates resulted in the formation of additional streamwise vortex structures in the upper part of the wake.  相似文献   

4.
5.
 Experimental studies of a plane jet impinging upon a small circular cylinder are conducted by hot-wire measurements. The cylinder is located on the jet centerline within the potential-core region. The jet–cylinder interactions on the instability shear layer frequency, the cylinder wake shedding frequency, and the induced self-sustained oscillation phenomenon are carefully investigated. Test data indicate that the self-sustained flow oscillation is mainly generated by the resonant effect of the flow between the jet exit and the cylinder. Its resonant frequency is found to vary linearly and exhibits jump-stage pattern as a function of the distance between the jet exit and the cylinder. The feedback mechanism and the hydrodynamic instability theorem are proposed to predict correctly the frequency jump position, wave number and the convection speed of the self-sustained oscillating flow for different jet exit velocities. Received: 15 July 1998/Accepted: 9 December 1998  相似文献   

6.
The separated shear layer in the near wake of a circular cylinder was investigated using a single hot wire probe, with special attention given to the shear layer instability characteristics. Without end plates to force parallel vortex shedding, the critical Reynolds number for the onset of the instability was 740. The present data, together with all previously published data, show that the ratio of the instability frequency fsl to the vortex shedding frequency fv varies as Re0.65, which is in agreement with the Re0.67 dependence obtained by Prasad and Williamson [1997, J Fluid Mech 333:375–402]. However, the distribution of fsl/fv and the spectra of the longitudinal velocity fluctuation (u) suggest that, on either side of Re=5,000, the shear layer exhibits lower and upper subcritical regimes, in support of the observations by Norberg [1987, publication no. 87/2, Chalmers University of Technology, Sweden] and Prasad and Williamson [1997, J Fluid Mech 343:235–265]. The spectra of u provide strong evidence for the occurrence of vortex pairing in wake shear layers, suggesting that the near wake develops in a similar manner to a mixing layer.  相似文献   

7.
Three-dimensional vorticity in the wake of an inclined stationary circular cylinder was measured simultaneously using a multi-hot wire vorticity probe over a streamwise range of x/d = 10–40. The study aimed to examine the dependence of the wake characteristics on cylinder inclination angle α (=0°–45°). The validity of the independence principle (IP) for vortex shedding was also examined. It was found that the spanwise mean velocity which represents the three-dimensionality of the wake flow, increases monotonically with α. The root-mean-square (rms) values of the streamwise (u) and spanwise (w) velocities and the three vorticity components decrease significantly with the increase of α, whereas the transverse velocity (v) does not follow the same trend. The vortex shedding frequency decreases with the increase of α. The Strouhal number (St N), obtained by using the velocity component normal to the cylinder axis, remains approximately a constant within the experimental uncertainty (±8%) when α is smaller than about 40°. The autocorrelation coefficients ρ u and ρ v of the u and v velocity signals show apparent periodicity for all inclination angles. With increasing α, ρ u and ρ v decrease and approach zero quickly. In contrast, the autocorrelation coefficient ρ w of w increases with α in the near wake, implying an enhanced three-dimensionality of the wake.  相似文献   

8.
The time-averaged velocity and streamwise vorticity fields within the wake of a stack were investigated in a low-speed wind tunnel using a seven-hole pressure probe. The experiments were conducted at a Reynolds number, based on the stack external diameter, of ReD=2.3×104. The stack, of aspect ratio AR=9, was mounted normal to a ground plane and was partially immersed in a flat-plate turbulent boundary layer, where the ratio of the boundary layer thickness to the stack height was δ/H≈0.5. The jet-to-cross-flow velocity ratio was varied from R=0 to 3, which covered the downwash, crosswind-dominated and jet-dominated flow regimes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip vortex pair located close to the free end of the stack, and the base vortex pair located close to the ground plane within the flat-plate boundary layer, were similar to those found in the wake of a finite circular cylinder, and were associated with the upwash and downwash flow fields within the stack wake, respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair had the same orientation as the base vortex pair and was associated with the jet rise. The peak vorticity and strength of the streamwise vortex structures were functions of the jet-to-cross-flow velocity ratio. For the tip vortex structures, their peak vorticity and strength reduced as the jet-to-cross-flow velocity ratio increased.  相似文献   

9.
Direct numerical simulation of flow past a stationary circular cylinder at yaw angles (α) in the range of 0–60° was conducted at Reynolds number of 1000. The three-dimensional (3-D) Navier–Stokes equations were solved using the Petrov–Galerkin finite element method. The transition of the flow from 2-D to 3-D was studied. The phenomena that were observed in flow visualization, such as the streamwise vortices, the vortex dislocation and the instability of the shear layer, were reproduced numerically. The effects of the yaw angle on wake structures, vortex shedding frequency and hydrodynamic forces of the cylinder were investigated. It was found that the Strouhal number at different yaw angles (α) follows the independence principle. The mean drag coefficient agrees well with the independence principle. It slightly increases with the increase of α and reaches a maximum value at α=60°, which is about 10% larger than that when α=0°. The root-mean-square (r.m.s.) values of the lift coefficient are noticeably dependent on α.  相似文献   

10.
This paper reports an experimental investigation on the wake of a blunt-based, flat plate subjected to aerodynamic flow vectoring using asymmetric synthetic jet actuation. Wake vectoring was achieved using a synthetic jet placed at the model base 2.5?mm from the upper corner. The wake Reynolds number based on the plate thickness was 7,200. The synthetic jet actuation frequency was selected to be about 75?% the vortex shedding frequency of the natural wake. At this actuation frequency, the synthetic jet delivered a periodic flow with a momentum coefficient, C ??, of up to 62?%. Simultaneous measurements of the streamwise and transverse components of the velocity were performed using particle image velocimetry (PIV) in the near wake. The results suggested that for significant wake vectoring, vortex shedding must be suppressed first. Under the flow conditions cited above, C ?? values in the range of 10?C20?% were required. The wake vectoring angle seemed to asymptote to a constant value of about 30° at downstream distances, x/h, larger than 4 for C ?? values ranging between 24 and 64?%. The phase-averaged vorticity contours and the phase-averaged normal lift force showed that most of the wake vectoring is produced during the suction phase of the actuation, while the blowing phase was mostly responsible for vortex shedding suppression.  相似文献   

11.
In this paper, we investigate the thermal characteristics of wake shear layers generated by a slightly heated circular cylinder. Measurements of the fluctuating temperature were made in the region x/d = 0.6 to x/d = 3 (where x is the downstream distance from the cylinder axis and d is the cylinder diameter) using a single cold-wire probe. The Reynolds number Re was varied in the range 2,600–8,600. For Re = 5,500, simultaneous measurements were made with a rake of 16 cold wires, aligned in the direction of the mean shear, at x/d = 2 and 3. The results indicate that the passive temperature can be an effective marker of various instabilities of the wake shear layers, including the Kelvin–Helmholtz (KH) instability. The temperature data have confirmed the approximate Re m dependence of the KH instability frequency (f KH) with different values of m over different ranges of Re, as reported previously in the literature. However, it is found that this power-law dependence is not exact, and a third-order polynomial dependence appears to fit the data well over the full range of Re. Importantly, it is found that the wake shear-layer instabilities can be grouped into three categories: (1) one with frequencies much smaller than the Bénard–Kármán-vortex shedding frequency, (2) one associated with the vortex shedding and (3) one related to the KH instability. The low-frequency shear-layer instabilities from both sides of the cylinder are in-phase, in contrast to the anti-phase high-frequency KH instabilities. Finally, the observed streamwise decrease in the mean KH frequency provides strong support for the occurrence of vortex pairing in wake shear layers from a circular cylinder, thus implying that both the wake shear layer and a mixing layer develop in similar fashion.  相似文献   

12.
This paper reports an experimental investigation of the vortex shedding wake behind a long flat plate inclined at a small angle of attack to a main flow stream. Detailed velocity fields are obtained with particle-image velocimetry (PIV) at successive phases in a vortex shedding cycle at three angles of attack, α=20°, 25° and 30°, at a Reynolds number Re≈5,300. Coherent patterns and dynamics of the vortices in the wake are revealed by the phase-averaged PIV vectors and derived turbulent properties. A vortex street pattern comprising a train of leading edge vortices alternating with a train of trailing edge vortices is found in the wake. The trailing edge vortex is shed directly from the sharp trailing edge while there are evidences that the formation and shedding of the leading edge vortex involve a more complicated mechanism. The leading edge vortex seems to be shed into the wake from an axial location near the trailing edge. After shedding, the vortices are convected downstream in the wake with a convection speed roughly equal to 0.8 the free-stream velocity. On reaching the same axial location, the trailing edge vortex, as compared to the leading edge vortex, is found to possess a higher peak vorticity level at its centre and induce more intense fluid circulation and Reynolds stresses production around it. It is found that the results at the three angles of attack can be collapsed into similar trends by using the projected plate width as the characteristic length of the flow.  相似文献   

13.
The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 × 106. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process.  相似文献   

14.
The passive control of bluff body wakes using a sparse layer of elastic hairy filaments has been investigated via a series of numerical simulations and compared to selected experiments under well-controlled boundary conditions. It has been found that a distribution of filaments spaced half of the dominant three dimensional instability and resonating with the main shedding frequency can drastically delay the three dimensional transition of the wake behind a circular cylinder. It will also be shown that when using a pair of rows of filaments symmetrically spaced by an azimuthal angle, the wake topology can be deeply affected as well as the value of the integral force coefficients of the cylinder. In the most favourable case, a coupled three dimensional transition delay and strongly reduced values of the drag and of the lift fluctuation can be simultaneously achieved. These results hold also for higher Reynolds-number flows as shown in experiments on a cylinder with hairy flaps attached to the aft part. The lock-in effect of structural vibration of the flaps with the vortex shedding is assumed to be the reason for a sudden change in the shedding cycle as soon as the motion amplitude is high enough to modify the wake. In line with this hypothesis, it has been demonstrated that a long elastic filament pinned on the centerline of a forced spatially developing mixing layer can interact with the vortex dynamics delaying the pairing process-leading to a reduced thickness of the layer. These findings show that a properly designed fluid structure interaction can indeed lead to technological benefits in terms of wake control: drag reduction, vibration control and possibly palliation of aeroacoustic emissions.  相似文献   

15.
Local and global instabilities are investigated of wakes of general two-dimensional bluff bodies placed near and parallel to a plane boundary or ground. A spatio-temporal linear stability analysis is first applied to a four-parameter family of local wake profiles to investigate the fundamental local stability characteristics of the wake in ground effect. The analysis shows significant dependencies of the stability characteristics of the wake on the distance from the wake centreline to the ground (normalised by the wake width), and also on the velocity ratio of the near- and far-ground sides of the wake. The analysis is then compared with earlier experiments on a circular cylinder to examine, according to the transition scenario of the steep global modes, the streamwise variation of the local stability characteristics of the wake in ground effect. The comparison indicates that the near wake region of the cylinder changes from being absolutely unstable to being convectively unstable when the cylinder comes down into the near-ground range in which the von Kármán-type vortex shedding from the cylinder is suppressed, being qualitatively consistent with the transition scenario for general wake-type flows. A possible explanation is also given for the counter-intuitive relation between the thickness of the boundary layer on the ground and the critical gap distance for the cessation of the von Kármán-type vortex shedding in ground effect.  相似文献   

16.
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.  相似文献   

17.
Using Large-eddy simulation (LES), the dynamics in the wake of a circular disk with an aspect ratio of d/w = 5 is numerically studied. The circular disk is normal to the main flow, and Reynolds number ranges from 115 to 300. The first bifurcation is confirmed for Re = 120, leading to the steady state mode with a reflectional symmetry and a double-thread wake extending to the downstream. The Hopf bifurcation is found for Re = 152, and the planar symmetry is lost, which is different from that observed in the sphere wake; it is called the “reflectional-symmetry-breaking (RSB)” mode and the hairpin vortices in this mode are always shedding in a fixed orientation. The third bifurcation is captured for Re = 166, which is named the “standing wave (SW)” mode; the planar symmetry lost in RSB mode is recovered and the hairpin vortices are shedding in the oppositely sided orientations, unlike the ones observed in the sphere wake. The fourth bifurcation, referred to as “zigzag (ZZ)” mode, is observed for Re = 265 and the planar symmetry is lost again; the hairpin vortices are shedding in an irregular orientation and propagating in a zigzagged way; and a few small-scale structures begin to appear. Three different vortex shedding regimes are found in RSB, SW and ZZ modes, respectively. Results show that the recirculation region plays a significant role in the mode transitions, and the stagnation point of recirculation zone is conjectured to be the initial region causing the wake instability.  相似文献   

18.
In contrast with a wide range of applications concerning flows around a circular cylinder at upper subcritical Reynolds numbers (Re), there is no systematic understanding about the fundamentals of so-called random flow patterns, and their effects on intermittent modulations in the time history of pressure or force, and the decrease in their spanwise correlations. This paper employed the large-eddy simulation (LES) technique to predict flows past a circular cylinder at Re=1.3×105 and to provide images based on flow visualization that can clarify the physical mechanism responsible for these outcomes. A reasonably sufficient spanwise length was adopted for the numerical model by taking into consideration the effect of aspect ratios (the spanwise length to the diameter). We found that even at such high Res, a three-dimensional pattern of vortical field is present in the wake resulting in total force modulation and weak spanwise correlation, e.g., obvious oblique shedding. The whole development process of the three-dimensional wake is exhibited as a universal. The results revealed that local phase variations in primary vortex shedding are the starting points of three-dimensional wake patterns, which are induced by the “irregular” streamwise vortex. The three-dimensional near wake following local phase variations is associated with a successive evolution composed of certain stages in order. Quantitative analyses based on the time series of sectional lift coefficients show that intermittent increase in primary shedding periods and sectional lift streak divisions are closely related to local phase variations and vortex division in the development process of the three-dimensional pattern. In addition to the phase difference along the span, the three-dimensional pattern also weakens vortex shedding in cross sections perpendicular to the axis of the cylinder, resulting in modulation of the sectional lift coefficient.  相似文献   

19.
In the present experimental study the effect of a control disc mounted at the rear of an axisymmetric blunt-based body of revolution, first studied by Mair, is investigated in the Reynolds number range 3×103ReD≤5×104 . As the distance of the control disc from the blunt base is increased, four vortex shedding regimes are identified: at small distances there is no effect, then a sharp increase of vortex shedding activity and total drag is observed, followed by an interval with reduced activity and drag and finally at large distances a regime where the flow around the main body and disc become essentially independent, i.e. where the drag forces of the two elements become additive. The near and far wake velocity fields corresponding to the different regimes are documented with time- and phase-averaged hot-wire and LDA measurements, with spectral analysis of the data and with flow visualizations of the near wake. The results are used to develop an improved understanding of the instability mechanism leading to high vortex shedding activity.  相似文献   

20.
Global linear stability analysis of the flow past a circular cylinder at the onset of primary wake instability is carried out. The real and imaginary parts of the most unstable eigenmode, responsible for vortex shedding, are very similar but associated with a spatial shift in the vortex structures. This shift results in the convection of vortices that are observed in the unsteady flow, which is actually a consequence of global absolute instability. The kinetic energy density, associated with the most unstable eigenmode, is studied. At the onset of the instability the energy density of the disturbance field is found to be stronger in the far wake compared with the near wake. With increase in Re the region where the disturbance is strong moves upstream closer to the cylinder. However, the maximum value of the kinetic energy density of the disturbance lies outside the recirculation zone even for Re upto 100. A linearized mechanical energy equation for the time evolution of the kinetic energy density of the disturbance is utilized to examine the energy budget of the most unstable eigenmode at various Re. It is found that the most significant contribution to the growth rate of the disturbance arises from the transfer of the energy due to the strain rate of the base flow to the perturbation. The stabilizing effect of the viscous dissipation increases with increase in Re, but saturates for Re beyond ~70. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号