共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the structure and dynamics of nominally two-dimensional turbulent wakes are investigated experimentally for a thin flat plate, normal to a uniform flow, with two different end conditions: with and without end plates. Both cases are characterized by Karman-like vortex shedding with broadband low frequency unsteadiness. Both wakes evidence a low frequency flapping motion in addition to the slowly drifting base flow common to cylinder wakes. For the case without end plates, an interaction between the drift motion and the vortex formation process is associated with a much stronger modulation of the quasiperiodic vortex shedding amplitude when compared to the case with end plates where a flapping motion is more strongly expressed. These dynamics underlie structural differences in the mean wake and Reynolds stress fields. 相似文献
2.
A direct numerical simulation dataset of a fully developed turbulent Couette-Poiseuille flow is analyzed to investigate the spatial organization of streamwise velocity-fluctuating u-structures on large and very large scales. Instantaneous and statistical flow fields show that negative-u structures with a small scale on a stationary bottom wall grow throughout the centerline due to the continuous positive mean shear, and they penetrate to the opposite moving wall. The development of an initial vortical structure related to negative-u structures on the bottom wall into a large-scale hairpin vortex packet with new hairpin vortices, which are created upstream and close to the wall, is consistent with the auto-generation process in a Poiseuille flow (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). Although the initial vortical structure associated with positive-u structures on the top wall also grows toward the bottom wall, the spatial development of the structure is less coherent with weak strength due to the reduced mean shear near the top wall, resulting in less turbulent energy on the top wall. The continuous growth of the structures from a wall to the opposite wall explains the enhanced wall-normal transport of the streamwise turbulent kinetic energy near the centerline. Finally, an inspection of the time-evolving instantaneous fields and conditional averaged flow fields for the streamwise growth of a very long structure near the centerline exhibits that a streamwise concatenation of adjacent large-scale u-structures creates a very-large-scale structure near the channel centerline. 相似文献
3.
The evolution of a wall-attached plume in a confined box is studied here with the aid of three dimensional direct numerical simulations (DNS). The plume originates from a local line heat source of length, L, placed at the bottom left corner of the box. The Reynolds number of the wall plume, based on box height and buoyant velocity scale, is and boxes of two different aspect ratios (ratio of box width to height) for a particular value of L are simulated. We observe that the plume develops along the vertical sidewall while remaining attached to it before spreading across the top wall to form a buoyant fluid layer and eventually moving downwards and filling the whole box. The original filling box model of Baines and Turner (1969) is modified to incorporate the wall shear stress, and the results from the DNS are compared against the new model. In modelling plumes, we find that the entrainment coefficient () for wall-attached plumes is reduced to approximately half of that in the free plume, and the main reason is a diminished contribution of turbulence production to resulting from a restricted ability of the large-scale eddies to transport momentum. Also, unlike the free plume where away from the source inertial forces balances buoyancy forces, here in our simulations of wall-attached plumes this balance is marginally off, likely due to wall friction. A reasonable agreement is observed between our model and DNS data for the volume and momentum fluxes in the quiescent uniform environment and also for the time-dependent buoyancy profile calculated far away from the plume. 相似文献
4.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over two-dimensional (2D) rod-roughened walls and three-dimensional (3D) cuboid-roughened walls are conducted to investigate the effects of the roughness height on the flow characteristics in the outer layer. The rod elements are periodically aligned along the downstream direction with a pitch of px/θin = 12, and the cuboid elements are periodically staggered with a pitch of px/θin = 12 and pz/θin = 3, where px and pz are correspondingly the streamwise and spanwise pitches of the roughness and θin is the momentum thickness at the inlet. The first surface roughness is placed 80θin downstream from the inlet, leading to a step change from a smooth to rough surface. The rod and cuboid roughness height (k) is varied in the range of 0.1 ≤ k/θin ≤ 1.8 (13 ≤ δ/k ≤ 285), respectively (δ is the boundary layer thickness), and the Reynolds number based on the momentum thickness (θ) is varied in the range of Reθ = 300 ~ 1400. For each case, the self-preservation form of the velocity-defect and the turbulent Reynolds stresses is achieved along the downstream direction. As the roughness height increases, the roughness function (ΔU+) extracted from the mean velocity profiles increases, although the velocity-defect profiles for the rough-wall cases show good agreement with the profile from the smooth-wall case. The magnitude of the Reynolds stresses in the outer layer increases with an increase of k/δ. The outer layer similarity between the flows over the rough and smooth-walls is found when δ/k ≥ 250 and 100 for the 2D rod and 3D cuboid, respectively. The continuous increase of the Reynolds stresses in the outer layer with an increase of k/δ is explained by a large population of very long structures over the rough-wall flows. Because the characteristic width of the structures increases continuously with an increase of k/δ for the rod and cuboid roughness, a wide width of the structures leads to frequent spanwise merging between adjacent structures. The active spanwise merging events with an increase of k/δ increase the streamwise coherence of the structures with the appearance of significant meandering. 相似文献
5.
We have conducted direct numerical simulations of a turbulent boundary layer for the momentum-thickness-based Reynolds number = 180–4600. To extract the largest-scale vortices, we coarse-grain the fluctuating velocity fields by using a Gaussian filter with the filter width comparable to the boundary layer thickness. Most of the largest-scale vortices identified by isosurfaces of the second invariant of the coarse-grained velocity gradient tensor are similar to coherent vortices observed in low-Reynolds-number regions, that is, hairpin vortices or quasi-streamwise vortices inclined to the wall. We also develop a percolation analysis to investigate the threshold-dependence of the isosurfaces and objectively identify the largest-scale hairpin vortices in terms of the coarse-grained vorticity, which leads to the quantitative evidence that they never disappear even in fully developed turbulent regions. Hence, we conclude that hairpin vortices exist in the largest-scale structures irrespective of the Reynolds number. 相似文献
6.
7.
8.
A procedure to identify the imperfection in thin plates is proposed in this paper. The modified potential energy principle, which serves as the theoretical basis of the identification procedure, is improved to allow for the experimental measurements in static tests. Several typical examples are studied to illustrate the effectiveness of the procedure. 相似文献
9.
10.
11.
Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study
Deposition and entrainment of particles in turbulent flows are crucial in a number of technological applications and environmental processes. We present a review of recent results from our previous works, which led to physical insights on these phenomena. These results were obtained from a systematic numerical study based on the accurate resolution – Direct Numerical Simulation via a pseudo-spectral approach – of the turbulent flow field, and on Lagrangian tracking of particles under different modelling assumptions. We underline the multiscale aspect of wall turbulence, which has challenged scientists to devise simple theoretical models adequate to fit experimental data, and we show that a sound rendering of wall turbulence mechanisms is required to produce a physical understanding of particle deposition and re-entrainment. This physical understanding can be implemented in more applied simulation techniques, such as Large-Eddy Simulation. Our arguments are based also on the phenomenology of coherent structures and on the examination of flow topology in connection with particle preferential distribution. Starting from these concepts, reasons why theoretical predictions may fail are examined together with the requirements which must be fulfilled by suitable predictive models. 相似文献
12.
The effect of rough surface topography on heat and momentum transfer is studied by direct numerical simulations of turbulent heat transfer over uniformly heated three-dimensional irregular rough surfaces, where the effective slope and skewness values are systematically varied while maintaining a fixed root-mean-square roughness. The friction Reynolds number is fixed at 450, and the temperature is treated as a passive scalar with a Prandtl number of unity. Both the skin friction coefficient and Stanton number are enhanced by the wall roughness. However, the Reynolds analogy factor for the rough surface is lower than that for the smooth surface. The semi-analytical expression for the Reynolds analogy factor suggests that the Reynolds analogy factor is related to the skin friction coefficient and the difference between the temperature and velocity roughness functions, and the Reynolds analogy factor for the present rough surfaces is found to be predicted solely based on the equivalent sand-grain roughness. This suggests that the relationship between the Reynolds analogy factor and the equivalent sand-grain roughness is not affected by the effective slope and skewness values. Analysis of the heat and momentum transfer mechanisms based on the spatial- and time-averaged equations suggests that two factors decrease the Reynolds analogy factor. One is the increased effective Prandtl number within the rough surface in which the momentum diffusivity due to the combined effects of turbulence and dispersion is larger than the corresponding thermal diffusivity. The other is the significant increase in the pressure drag force term above the mean roughness height. 相似文献
13.
In the present work, a further numerical simulation of the starting flow around a flat plate normal to the direction of motion
in a uniform fluid has been made by means of the discrete vortex method. The secondary separation occurring at rear surface
of the plate is explored, and predicted approximately using Thwait's method. The calculated results show that in the early
stages of the flow secondary separation does occur. The evolution of flow field, the vortex growing process and the characteristics
of secondary vortices have been described. The time dependent drag coefficients, the vorticity shed from the edges and rear
surface, and the separation positions are calculated as well as the distributions of velocity and pressure on the plate. In
the case of flow normal to the plate, the calculated secondary vortices are weak. Their existence will change the local velocity
distributions and affect pressure distributions. However, the effect on drag coefficient is negligible. 相似文献
14.
《Wave Motion》2017
Measurements of the wave fields reflected and transmitted by a thin floating plastic plate are reported for regular incident waves over a range of incident periods (producing wavelengths comparable to the plate length) and steepnesses (ranging from mild to storm-like). Two different plastics are tested, with different densities and mechanical properties, and three different configurations are tested. The configurations include freely floating plates, loosely moored plates (to restrict drift), and plates with edge barriers (to restrict waves overwashing the plates). The wave fields reflected and transmitted by plates without barriers are shown to become irregular, as the incident waves become steeper, particularly for the denser plastic and the moored plate. Further, the proportion of energy transmitted by the plates without barriers is shown to decrease as the incident wave becomes steeper, and this is related to wave energy dissipation. 相似文献
15.
江福汝 《应用数学和力学(英文版)》1987,8(9):797-813
In this paper we apply the modified method of multiple scales to study the postbuckling behaviors of annular and circular thin plates. The asymptotic solutions have been constructed, the ultimate loads have been determined, and the relations between the length of twisted waves formed by buckling and the flexural rigidity of plates have been discovered.Projects Supported by the Sciences Fund of the Chinese Academy of Sciences 相似文献
16.
Opposition controlled fully developed turbulent flow along a thin cylinder is analyzed by means of direct numerical simulations. The influence of cylinder curvature on the skin-friction drag reduction effect by the classical opposition control (i.e., the radial velocity control) is investigated. The curvature of the cylinder affects the uncontrolled flow statistics; for instance, skin-friction coefficient increases while Reynolds shear stress (RSS) and turbulent intensity decrease. However, the control effect in the case of a small curvature is similar to that in channel flow. When the curvature is large, the maximum drag reduction rate decreased. However, the optimal location of the detection plane is the same as that in a flat plate. Further, the drag reduction effect is achieved even on a high detection plane where the drag increases in the flat plate. Although a difference in the drag reduction effect can be observed with a change in the curvature, its mechanism considered in this analysis based on the transport of the Reynolds stress is similar to that of the flat plate. 相似文献
17.
Converged simulations of vortex shedding from a circular cylinder at a Reynolds number of 100 have been computed by the random-vortex method incorporating the influence of blockage. The results are compared with converged finite-element and spectral methods and close agreement for Strouhal number is obtained. Forces are, however, in less close agreement, particularly the fluctuating lift force. Strouhal numbers from simulations with zero blockage for Reynolds numbers between 60 and 180 are seen to be in very close agreement with experiments which are said to be effectively two-dimensional. In this range the Strouhal number changes from 0·135 to 0·191. There are no corresponding experimental measurements for force. 相似文献
18.
The purpose of this paper is to propose numerical methods to determine the macroscopic bending strength criterion of periodically heterogeneous thin plates in the framework of yield design (or limit analysis) theory. The macroscopic strength criterion of the heterogeneous plate is obtained by solving an auxiliary yield design problem formulated on the unit cell, that is the elementary domain reproducing the plate strength properties by periodicity. In the present work, it is assumed that the plate thickness is small compared to the unit cell characteristic length, so that the unit cell can still be considered as a thin plate itself. Yield design static and kinematic approaches for solving the auxiliary problem are, therefore, formulated with a Love–Kirchhoff plate model. Finite elements consistent with this model are proposed to solve both approaches and it is shown that the corresponding optimization problems belong to the class of second-order cone programming (SOCP), for which very efficient solvers are available. Macroscopic strength criteria are computed for different type of heterogeneous plates (reinforced, perforated plates,…) by comparing the results of the static and the kinematic approaches. Information on the unit cell failure modes can also be obtained by representing the optimal failure mechanisms. In a companion paper, the so-obtained homogenized strength criteria will be used to compute ultimate loads of global plate structures. 相似文献
19.
Direct numerical simulation is used to study the loading of a rigid, circular cylinder impacted by a 2D vortex. The vortex travels within a stream of fluid characterized by Reynolds number of 150. Vortex impact occurs at twenty-five different times within one vortex shedding cycle. Substantial variation is observed in the maximum values of the drag and lift force coefficients. This variation is due to interaction between the impinging vortex and those attached to the cylinder. As the radius of the impinging vortex is increased from one to three times the cylinder’s diameter, the variation in maximum force coefficients with time of impact decreases. The variation decreases because the larger vortex alters the flow field and vortex shedding cycle prior to impacting the cylinder. For structures impacted by a vortex similar in size, significant under-prediction of the maximum loading may occur if variation in loading with vortex impact time is not considered. 相似文献
20.
The effects of mean flame radius and turbulence on self-sustained combustion of turbulent premixed spherical flames in decaying
turbulence have been investigated using three-dimensional direct numerical simulations (DNS) with single step Arrhenius chemistry.
Several flame kernels with different initial radius or initial turbulent field have been studied for identical conditions
of thermo-chemistry. It has been found that for very small kernel radius the mean displacement speed may become negative leading
ultimately to extinction of the flame kernel. A mean negative displacement speed is shown to signify a physical situation
where heat transfer from the kernel overcomes the heat release due to combustion. This mechanism is further enhanced by turbulent
transport and, based on simulations with different initial turbulent velocity fields, it has been found that self-sustained
combustion is adversely affected by higher turbulent velocity fluctuation magnitude and integral length scale. A scaling analysis
is performed to estimate the critical radius for self-sustained combustion in premixed flame kernels in a turbulent environment.
The scaling analysis is found to be in good agreement with the results of the simulations. 相似文献