首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The core of a Liquid Metal Fast Breeder Reactor (LMFBR) consists of cylindrical fuel rods that are wrapped by a helicoidally-wound wire spacer to enhance mixing and to prevent damage by fretting. It is known that the liquid metal close to the rod is forced to follow the wires, and that liquid metal further away from the rod crosses the wires (called: migratory flow). This work aims at gaining more insight into the physics behind migratory flow and to provide a model for its bending angle. To this purpose, the flow field in a 7-rods, wire-wrapped, hexagonal bundle with water is studied within the Reynolds number range of 4990–16330 by using Particle Image Velocimetry (PIV). Refraction of the light is minimized by using Fluorinated Ethylene Propylene (FEP), which is a refractive index-matching (RIM) material. These measurements confirm that liquid near the rod follows the helicoid path and bends cross-wise with respect to the wire further away from the rod. A theoretical model for the bending angle of the flow is derived from the Euler equations and shows that the bending is primarily caused by the pressure gradient field induced by the wire. The model shows a very good correspondence with the experimentally obtained PIV data. These findings improve our understanding of the physics at play in rod bundle flows with wrapped wires and can be of assistance in developing practical correlations for frictional pressure losses and heat transfer in such bundles.  相似文献   

2.
Thermal-hydraulic conditions in a partially uncovered nuclear fuel assembly mock-up are studied with particular focus on the influence of the horizontal air flow above the rod bundle. The investigations are performed at the ALADIN test facility, which models a boiling water reactor fuel assembly at a 1:1 scale both axially and radially. In the scenario studied, the main heat transfer mechanisms – conduction, convection and radiation – are strongly coupled and all are of similar importance. A combination of measurements and CFD simulations serves to analyze the heat transfer processes in detail. Contrary to previous studies in this field, all heat transfer mechanisms were considered in the simulation with sophisticated models. The numerical results show a good agreement with the measurements, given the inevitable differences between the approaches. Although the successive evaporation of cooling water in a fuel assembly is a transient, multiphase process, the steady, single-phase simulation yields acceptable results. While single effects are overestimated in the simulation, the important dependencies are predicted similarly. A general result is that the maximum cladding temperature rises with decreasing water level. Further results indicate an impact of the horizontal air flow on the residual heat removal for moderate rod powers. Higher horizontal velocities above the fuel assembly lead to slightly higher temperatures inside. A characteristic flow field forms in the test facility that prevails for all studied water levels and horizontal velocities. However, it has only a minor effect on the temperature distribution in the central rod bundle. By combining experiments and numerical simulations, the study provides important information about the decisive parameters for the heat exchange in a spent fuel pool in case of an accident with loss of cooling. The exposed length of the fuel rods is of much more importance than the magnitude of the horizontal velocity above the fuel assembly.  相似文献   

3.
The current work experimentally investigates the flow characteristics in the near-wall region of the 61-pin wire-wrapped hexagon fuel bundle via the matched-index-of-refraction technique. Particle image velocimetry (PIV) measurements were taken in the region near the surfaces of the pins, wires and enclosure wall at the Reynolds number of 19,000. From the obtained PIV velocity vector fields, flow statistics such as mean velocity and root-mean-square fluctuating velocity profiles were computed. In addition, spatial-temporal cross-correlations of velocity-velocity and pressure-velocity were analyzed. A strong correlation between the wall fluctuating pressure signal and flow structures was observed. Finally, we applied the POD analysis to the vorticity snapshots obtained in the near-wall region to reveal the dominant flow structures. It was found that the large-scale structures were elongated and aligned with the mean flow direction.  相似文献   

4.
The major objective of this work is to numerically investigate the interacting physical and chemical phenomena that characterize the flow in a stabilized cool flame diesel fuel spray evaporation system. A two-phase RANS computational fluid dynamics code has been developed and used to predict the characteristics of the developing turbulent, multiphase, multi-component, reactive flow-field. The code employs a Eulerian–Lagrangian approach, taking into account the mass, momentum, thermal and turbulent energy exchange between the phases. A variety of physical phenomena, such as turbulent dispersion, droplet evaporation, droplet-wall collision, conjugate heat transfer, drift correction, two-way coupling are taken into account by implementing respective sub-models. Two alternative modelling approaches for the simulation of cool flame reactions have been validated and evaluated by comparing numerical predictions with experimental data from two atmospheric pressure, evaporating Diesel spray, Stabilized Cool Flame reactors. Both models have achieved good quantitative agreement in the majority of the considered test cases. The results have been used to estimate the local physical and chemical characteristic time scales of the occurring phenomena, thus allowing, for the first time, the classification of stabilized cool flames.  相似文献   

5.
The behavior of reactor systems is predicted using advanced computational codes in order to determine the safety characteristics of the system during various accidents and to determine the performance characteristics of the reactor. These codes generally utilize the two-fluid model for predictions of two-phase flows, as this model is the most accurate and detailed model which is currently practical for predicting large-scale systems. One of the weaknesses of this approach however is the need to develop constitutive models for various quantities. Of specific interest are the models used in the prediction of void fraction and pressure drop across the rod bundle due to their importance in new Natural Circulation Boiling Water Reactor (NCBWR) designs, where these quantities determine the coolant flow rate through the core. To verify the performance of these models and expand the existing experimental database, data has been collected in an 8 × 8 rod bundle which is carefully scaled from actual BWR geometry and includes grid spacers to maintain rod spacing. While these spacer grids are ’generic’, their inclusion does provide valuable data for analysis of the effect of grid spacers on the flow. In addition to pressure drop measurements the area-averaged void fraction has been measured by impedance void meters and local conductivity probes have been used to measure the local void fraction and interfacial area concentration in the bundle subchannels. Experimental conditions covered a wide range of flow rates and void fractions up to 80%.  相似文献   

6.
The aim of this study is to develop a tractable model of a nuclear reactor core taking the complexity of the structure (including its nonlinear behaviour) and fluid flow coupling into account. The mechanical behaviour modelling includes the dynamics of both the fuel assemblies and the fluid. Each rod bundle is modelled in the form of a deformable porous medium; then, the velocity field of the fluid and the displacement field of the structure are defined over the whole domain. The fluid and the structure are first modelled separately, before being linked together. The equations of motion for the structure are obtained using a Lagrangian approach and, to be able to link up the fluid and the structure, the equations of motion for the fluid are obtained using an arbitrary Lagragian Eulerian approach. The finite element method is applied to spatially discretize the equations. Simulations are performed to analyse the effects of the characteristics of the fluid and of the structure. Finally, the model is validated with a test involving two fuel assemblies, showing good agreement with the experimental data.  相似文献   

7.
In order to increase data on two-phase flow distribution in a multi-subchannel system, being similar to a rod bundle, experiments have been carried out using water and air at ambient pressure and temperature as the working fluids and a newly constructed 2 × 3 rod bundle channel as the test channel. The channel contained six rods in rectangular array and two-kinds of six subchannels, simulating a BWR fuel rod bundle. Experimental data on flow distribution and pressure drop along each subchannel axis were obtained in various single- and two-phase flows under a hydraulic equilibrium flow condition. From the measured pressure drop in the single-phase flow, friction factor data in each subchannel were obtained. The two-phase pressure drop data were compared with calculations by a simple, one-dimensional, one-pressure two-fluid model. In addition, Taylor bubble velocity in each subchannel in slug-churn flows was measured with a double needle contact probe. Using the bubble velocity data, we obtained a subchannel void fraction in each subchannel, and discussed a relationship of the subchannel void fractions between two different subchannels. Results of such experiments and discussions are presented in this paper.  相似文献   

8.
In this article, a standard 2D Two-Fluid Model (TFM) closed by the kinetic theory of granular flow (KTGF) has been applied to simulate the behavior of tapered-in and tapered-out fluidized bed reactors. In this regard, two types of chemical reactions with gas volume reduction and increase were considered to investigate the effects of initial static bed height on the fractional conversion and bed pressure drop. To validate the CFD model predictions, the results of hydrodynamic simulations concerning bed pressure drop and bed expansion ratio were compared against experimental data reported in the literature and excellent agreement was observed. The obtained simulation results clearly indicate that there is an appropriate static bed height in a tapered-in reactor in which the fractional conversion becomes maximum at this height; whereas variations of static bed height in a tapered-out reactor have insignificant influences on the fractional conversion. Moreover, it was found that the residence time, temperature, and intensity of turbulence of the gas phase are three important factors affecting the fractional conversion in tapered fluidized bed reactors. In addition, it was observed that increasing the static bed height increases the bed pressure drop for both the tapered-in and tapered-out fluidized bed reactors.  相似文献   

9.
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing, the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. The overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.  相似文献   

10.
In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.  相似文献   

11.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process. Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-offbetween computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient. A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementa- tion is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases, For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations, The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system, The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

12.
Simulations of an experimental hydrogen-fueled scramjet combustor are conducted using a novel dynamic hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation (DHRL) modeling framework. The combustor has a Mach 2 core flow with a ramp fuel injector resulting in an equivalence ratio of 0.17. Three grid resolutions are obtained using local refinement by a factor of two in each direction in the fuel mixing and combustion region, and results from the three grids are used to understand the effect of grid refinement. Simulations reproduce temperature, pressure, velocity, and fuel concentrations in reasonable agreement with experimental measurements. Although heat release decreases on average, as the mesh is refined, peaks of heat release are intensified causing locally elevated temperatures. Spectral analysis of turbulence kinetic energy and heat release suggests stringent resolution requirements for reacting simulations capable of accurately resolving the effects of chemical reactions. Using the medium grid the DHRL model is compared to the improved delayed detached eddy simulation (IDDES) model and two Reynolds-averaged Navier-Stokes (RANS) models. Overall, the DHRL framework significantly outperforms other methods when compared to the experimental pressure rise. Additionally, spectral analysis suggests that the current framework is capable of accurately resolving turbulent structures at frequencies higher than IDDES. The study is the first documenting the use of DHRL for supersonic reacting flow and results suggest that it is a viable alternative to existing turbulence treatments for these types of flows.  相似文献   

13.
Two-phase pressure drop measurements are very difficult to make while the fluid is in non-equilibrium condition, i.e. while phase change is taking place. This is further complicated when an atomized liquid is introduced in the system at much higher velocity than other components such as liquid layer, vapor core, and entrained droplets. The purpose of this paper is to develop a model to predict the two-phase pressure characteristics in a mesochannel under various heat flux and liquid atomization conditions. This model includes the momentum effects of liquid droplets from entrainment and atomization. To verify the model, an in-house experimental setup consisting of a series of converging mesochannels, an atomization facility and a heat source was developed. The two-phase pressure of boiling PF5050 was measured along the wall of a mesochannel. The one-dimensional model shows good agreement with the experimental data. The effects of channel wall angle, droplet velocity and spray mass fraction on two-phase pressure characteristics are predicted. Numerical results show that an optimal spray cooling unit can be designed by optimizing channel wall angle and droplet velocity.  相似文献   

14.
Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction.The increasingly used monolithic reactor,in contrast,has many operational advantages;however,for a kinetically-controlled reaction,it does not contain sufficient catalyst to sustain the reaction.To address the problems associated with both randomly packed-bed reactor and the monolithic reactor,a structured packed-bed reactor was proposed and mathematical models were built for randomly packed-bed reactor and structured packed-bed reactor.Their respective performances were compared when applied to the exothermic reaction of the isopropanol-acetone-hydrogen chemical heat pump system.The results showed that the structured packed-bed reactor performed better in terms of pressure drop and heat transfer capacity,and had a lower radial temperature gradient,indicating that this reactor had a higher effective heat conductivity.Isopropanol on the catalyst particle surfaces was more concentrated near the tube wall because a wall effect existed in the boundary layer around the particle-wall contact points.  相似文献   

15.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process.Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-off between computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient.A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementation is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases.For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations. The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system.The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

16.
Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction. The increasingly used monolithic reactor, in contrast, has many operational advantages; however, for a kinetically-controlled reaction, it does not contain sufficient catalyst to sustain the reaction. To address the problems associated with both randomly packed-bed reactor and the monolithic reactor, a structured packed-bed reactor was proposed and mathematical models were built for randomly packed-bed reactor and structured packed-bed reactor. Their respective performances were compared when applied to the exothermic reaction of the isopropanol–acetone–hydrogen chemical heat pump system. The results showed that the structured packed-bed reactor performed better in terms of pressure drop and heat transfer capacity, and had a lower radial temperature gradient, indicating that this reactor had a higher effective heat conductivity. Isopropanol on the catalyst particle surfaces was more concentrated near the tube wall because a wall effect existed in the boundary layer around the particle-wall contact points.  相似文献   

17.
In this study, a thermal-hydraulic analysis of the VVER-1000 reactor core is performed using a porous media approach. Based on this approach, each fuel assembly was modeled and was divided into a network of lumped regions, each of which was characterized by a volume average parameter. The conservation equations of mass, linear momentum and energy are derived and discretized using the finite volume method in a hexagonal coordinate system. The pressure, velocity and temperature fields are achieved using a numerical analysis of the above mentioned coupled equations. To validate the applied approach, the numerical analysis and COBRA EN code results were compared and showed good agreement.  相似文献   

18.
The dynamic characteristics of a gas-solid fluidized bed with different rod promoters have been investigated in terms of bed expansion and fluctuation, minimum fluidization velocity and distributor-to-bed pressure drop ratio at minimum fluidization velocity. Experimentation based on statistical design has been carried out and model equations using factorial design of experiments have been developed for the above mentioned quantities for a promoted gas-solid fluidized bed. The model equations have been tested with additional experimental data. The system variables include four types of rod promoters of varying blockage volume, bed particles of four sizes and four initial static bed heights. A comparison between the predicted values of the output variables using the proposed model equation with their corresponding experimental ones shows fairly good agreement.  相似文献   

19.
In this paper, dynamic measurements of fluid velocity in the by-passes of a test-section representing a nuclear fuel assembly are presented. The test-section was designed to identify stiffness, damping and mass coefficients of a fuel assembly under axial flow, and previous studies have shown that the by-passes have an influence on the identified coefficients. The results presented in this paper show that the motion of the fuel assembly induces fluctuations in the axial fluid velocity in the by-passes. These fluctuations depend on the excitation frequency and position. A delay has been observed between the fuel assembly displacement and the fluid velocity fluctuations. The delay decreases when the axial velocity increases which means that it is a convection driven phenomenon.  相似文献   

20.
The velocity field in the central sagittal plane of an idealized representation of the human oropharynx (HOP) during steady inspiration, simulating oral inhalation through an inhaler mouthpiece, was measured experimentally using endoscopic particle image velocimetry (PIV). Measurements were made at three flow rates: 15, 30, and 90 L/min, which correspond to a wide range of physiological conditions. Extensive tests were performed to verify the veracity of the PIV data. The flow was also modeled computationally using Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) methods. The PIV data clearly indicate the complex nature of HOP flow, with three-dimensionality and several regions of separation and recirculation evident. Comparison of the experimental and computational results shows that, although the RANS CFD reproduces the basic features of the flow, it does not adequately capture the increased viscous effects at lower Reynolds numbers. The results demonstrate the need for more development and validation of CFD modeling, in particular RANS methods, in these flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号