首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydraulic characteristics in subchannels of axially finned rod bundles installed in the Korea Multipurpose Research Reactor (KMRR) were measured using one-component laser-Doppler velocimetry (LDV). Pressure drops for each component, time mean axial velocity, and axial turbulent intensity were measured. Then the friction factors in rod bundles were estimated from the measured pressure drops. The turbulent crossflow mixing rate between neighboring subchannels was evaluated from the measured data. The results show that (1) the friction factors for axially finned rod bundles are less than those given by Moody's correlation for smooth tubes, and (2) as the flow develops, the turbulent crossflow mixing rate between neighboring subchannels decreases and, in the developed region, the values level out.  相似文献   

2.
A Large Eddy Simulation (LES) of turbulent flow over an airfoil near stall is performed. Results of the LES are compared with those of Reynolds-Averaged Navier-Stokes (RANS) simulations using two well-known turbulence models, namely the Baldwin-Lomax model and the Spalart-Allmaras model. The subgrid scale model used for the LES is the filtered structure function model. All simulations are performed using the same structured multi-block code. In order to reduce the CPU time, an implicit time stepping method is used for the LES. The purpose of this study is to show the possibilities and limitations of LES of complex flows associated with aeronautical applications using state of the art simulation techniques. Typical flow features are captured by the LES such as the adverse-pressure gradient and flow retardation. Visualization of instantaneous flow fields shows the typical streaky structures in the near-wall region.  相似文献   

3.
A hybrid method combining large eddy simulation (LES) with the Reynolds-averaged Navier-Stokes (RANS) equation is used to simulate a turbulent channel flow at high Reynolds number. It is known that the mean velocity profile has a mismatch between the RANS and LES regions in hybrid simulations of a channel flow. The velocity mismatch is reproduced and its dependence on the location of the RANS/LES interface and on the type of RANS model is examined in order to better understand its properties. To remove the mismatch and to obtain better velocity profiles, additional filtering is applied to the velocity components in the wall-parallel planes near the interface. The additional filtering was previously introduced to simulate a channel flow at low Reynolds number. It is shown that the filtering is effective in reducing the mismatch even at high Reynolds number. Profiles of the velocity fluctuations of runs with and without the additional filtering are examined to help understand the reason for the mismatch. Due to the additional filtering, the wall-normal velocity fluctuation increases at the bottom of the LES region. The resulting velocity field creates the grid-scale shear stress more efficiently, and an overestimate of the velocity gradient is removed. The dependence of the velocity profile on the grid point number is also investigated. It is found that the velocity gradient in the core region is underestimated in the case of a coarse grid. Attention should be paid not only to the velocity mismatch near the interface but also to the velocity profile in the core region in hybrid simulations of a channel flow at high Reynolds number. PACS47.27.Eq; 47.27.Nz; 47.60.+i  相似文献   

4.
Critical heat flux and turbulent mixing in hexagonal tight rod bundles   总被引:3,自引:0,他引:3  
Experimental and theoretical investigations have been performed on critical heat flux (CHF) and turbulent mixing in tight, hexagonal, 7-rod bundles. Freon-12 was used as working fluid due to its low latent heat, low critical pressure and well known properties. It has been found that the two-phase mixing coefficient depends mainly on mass flux. It increases with decreasing mass flux and ranges from 0.01 to 0.04 for the test conditions considered. More than 900 CHF data points have been obtained in a large range of parameters: pressure 1.0–3.0 MPa and mass flux 1.0–6.0 Mg/m2s. The effect of different parameters on CHF has been analysed. It has been found that the effect of pressure, mass flux and vapour quality on CHF is similar to that observed in circular tubes. Nevertheless, the CHF in the tight rod bundle is much lower than that in a circular tube of the same equivalent hydraulic diameters. The effect of wire wraps on CHF is mainly dependent on local vapour qualities and subsequently on flow regimes. Based on subchannel flow conditions, the effect of radial power distribution on CHF is small. Comparison of the test results with CHF prediction methods underlines the need for further work.  相似文献   

5.
A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space‐filling quasi‐direct numerical simulations (QDNS), which sample the response of near‐wall turbulence to large‐scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse‐grid LES, with the equivalent of wall functions supplied by the near‐wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ=4200 and 20000. The total grid point count for the first case is less than half a million and less than 2 million for the second case, with the calculations only requiring a desktop computer. A good agreement with published direct numerical simulation (DNS) is found at Reτ=4200, both in the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near‐wall turbulence levels due to a modulation of near‐wall streaks by large‐scale structures. The trend continues at Reτ=20000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES‐QDNS coupling strategy and subgrid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.  相似文献   

6.
A review of existing basic turbulence modeling approaches reveals the need for the development of unified turbulence models which can be used continuously as filter density function (FDF) or probability density function (PDF) methods, large eddy simulation (LES) or Reynolds-averaged Navier–Stokes (RANS) methods. It is then shown that such unified stochastic and deterministic turbulence models can be constructed by explaining the dependence of the characteristic time scale of velocity fluctuations on the scale considered. The unified stochastic model obtained generalizes usually applied FDF and PDF models. The unified deterministic turbulence model that is implied by the stochastic model recovers and extends well-known linear and nonlinear LES and RANS models for the subgrid-scale and Reynolds stress tensor.   相似文献   

7.
The turbulent flow and heat transfer in triangular rod bundles are investigated theoretically with CFD code FLUENT. The unsteady Reynolds Stress Model is adopted as turbulence modeling. The wall function is used for near wall boundary layer. The calculation results were in agreement with experimental data. The effects of the Reynolds number and pitch to diameter ratio on the flow and heat transfer in the lattice are significant. The traditional theoretical models could not predict the flow and heat transfer in the lattice. The P/D = 1.03 is a critical point. In this case, the flow and heat transfer in the lattice is the most desirable and most efficient, and the nuclear power could also reach its maximum. The variation of large scale coherent structure with pitch to diameter ratio is consistent with the variation of the Nusselt number with pitch to diameter ratio.  相似文献   

8.
Particle behavior in a turbulent flow in a circular pipe with a bed height h = 0.5R is studied at Reb = 40,000 and for two sizes of particles (5 μm and 50 μm) using large eddy simulation, one-way coupled with a Lagrangian particle tracking technique. Turbulent secondary flows are found within the pipe, with the curved upper wall affecting the secondary flow formation giving rise to a pair of large upper vortices above two smaller vortices close to the pipe floor. The behavior of the two sizes of particle is found to be quite different. The 50 μm particles deposit forming irregular elongated particle streaks close to the pipe floor, particularly at the center of the flow and the pipe corners due to the impact of the secondary flows. The deposition and resuspension rate of the 5 μm particles is high near the center of the floor and at the pipe corners, while values for the 50 μm particles are greatest near the corners. Near the curved upper wall of the pipe, the deposition rate of the 5 μm particles increases in moving from the wall center to the corners, and is greater than that for the larger particles due to the effects of the secondary flow. The maximum resuspension rate of the smaller particles occurs above the pipe corners, with the 50 μm particles showing their highest resuspension rate above and at the corners of the pipe.  相似文献   

9.
The computational cost of large eddy simulation (LES) increases rapidly with the Reynolds number when applied to attached boundary layers. This problem can be avoided by use of a Reynolds-averaged Navier–Stokes (RANS) model in the inner part of the boundary layer, which reduces the computational cost drastically. Such hybrid LES/RANS methods yield accurate results in general, but suffer from an artificial buffer layer and a shift in the velocity profile around the modeling interface. This velocity shift can be removed by use of additional forcing, but the results are very sensitive to the forcing amplitude.

The present paper proposes a feedback algorithm which efficiently finds the appropriate amplitude and thus yields accurate flow statistics. The feedback algorithm is relatively robust, both in that it is insensitive to the values of the parameters involved and that it yields accurate results with different forcing fields and for different Reynolds numbers. It is argued that the feedback algorithm is consistent with the underlying assumptions of hybrid LES/RANS and that it does not introduce additional empiricism into the method.  相似文献   

10.
11.
A new two-equation model is proposed for large eddy simulations (LESs) using coarse grids. The modeled transport equations are obtained from a direct transposition of well-known statistical models by using multiscale spectrum splitting given by the filtering operation applied to the Navier–Stokes equations. The model formulation is compatible with the two extreme limits that are on one hand a direct numerical simulation and on the other hand a full statistical modeling. The characteristic length scale of subgrid turbulence is no longer given by the spatial discretization step size, but by the use of a dissipation equation. The proposed method is applied to a transposition of the well-known k- statistical model, but the same method can be developed for more advanced closures. This approach is intended to contribute to non-zonal hybrid models that bridge Reynolds-averaged Navier–Stokes (RANS) and LES, by using a continuous change rather than matching zones. The main novelty in the model is the derivation of a new equation for LES that is formally consistent with RANS when the filter width is very large. This approach is dedicated to applications to non-equilibrium turbulence and coarse grid simulations. An illustration is made of large eddy simulations of turbulence submitted to periodic forcing. The model is also an alternative approach to hybrid models. PACS 47.27.Eq  相似文献   

12.
A grid-averaged Lagrangian (GAL) model for dispersed particle motion in multiphase turbulent flow is presented to provide a large eddy simulation (LES) model for multiphase turbulent flow in which a quite large number of particles are involved. The GAL model is based on an averaging operation for a Lagrangian-type equation of motion of a particle over a computational grid volume and a procedure of reallocation of a dispersed particle cloud with its centroid movement to each grid. The model is therefore a mixed Eulerian–Lagrangian model which can effectively reduce computational time compared with existing Lagrangian-type models, without losing the advantage of Lagrangian-type models that they can properly describe the dynamical evolution of particles. Since the GAL model adopts the grid-volume averaging operation it can easily provide an effective SGS model for LES modeling of multiphase turbulent flow. The validity of the multiphase LES model developed, which is named the GAL-LES model, is confirmed through its application to a particle plume, in which the present model is found to simulate large-eddy motion usually observed in a jet and plume, and to give good agreements with experimental data.  相似文献   

13.
14.
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.  相似文献   

15.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

16.
The present study is focused on large eddy simulations (LES) that use a statistical (RANS) turbulence model near solid walls, and on the artificial buffer layer that is formed at the interface between these two modeling regions. Additional forcing is used to trigger resolved motions in the LES region more quickly, and leads to improved results in several ways. The study investigates the artificial buffer layer and how it changes with the use of forcing in an in-depth manner, with the purpose of increased understanding of the increasingly popular hybrid LES/RANS group of methods.

The artificial buffer layer is shown to extend from below the modeling interface to well above it, in fact up to 20% of the boundary layer thickness for the cases studied here. The artificial buffer layer is found to be similar to the true buffer layer in many aspects, including a high correlation between the streamwise and wall normal velocity components in the ‘superstreaks’. This indicates that while the superstreaks are highly anisotropic and have unphysical length scales, they still contribute to the resolved shear stress. The forcing does not remove the artificial buffer layer, but it does reduce its extent and increases the resolved shear stress. This increase is mainly associated with increased fluctuations of the wall normal velocity.

A simple, low-dimensional forcing model is proposed and tested, with favorable results. The model is simple to implement and easily generalized to more complex geometries.  相似文献   


17.
18.
19.
This paper describes a complete framework to predict the behaviour of interacting non-spherical particles with large Stokes numbers in a turbulent flow. A summary of the rigid body dynamics of particles and particle collisions is presented in the framework of Quaternions. A particle-rough wall interaction model to describe the collisions between non-spherical particles and a rough wall is put forward as well. The framework is coupled with a DNS-LES approach to simulate the behaviour of horizontal turbulent channel flow with 5 differently shaped particles: a sphere, two types of ellipsoids, a disc, and a fibre. The drag and lift forces and the torque on the particles are computed from correlations which are derived using true DNS.The simulation results show that non-spherical particles tend to locally maximise the drag force, by aligning their longest axis perpendicular to the local flow direction. This phenomenon is further explained by performing resolved direct numerical simulations of an ellipsoid in a flow. These simulations show that the high pressure region on the acute sides of a non-spherical particle result in a torque if an axis of the non-spherical particle is not aligned with the flow. This torque is only zero if the axis of the particle is perpendicular to the local direction of the flow. Moreover, the particle is most stable when the longest axis is aligned perpendicular to the flow.The alignment of the longest axis of a non-spherical particle perpendicular to the local flow leads to non-spherical particles having a larger average velocity compared to spherical particles with the same equivalent diameter. It is also shown that disc-shaped particles flow in a more steady trajectory compared to elongated particles, such as elongated ellipsoids and fibres. This is related to the magnitude of the pressure gradient on the acute side of the non-spherical particles. Finally, it is shown that the effect of wall roughness affects non-spherical particles differently than spherical particles. Particularly, a collision of a non-spherical particle with a rough wall induces a significant amount of rotational energy, whereas a corresponding collision with a spherical particle results in mostly a change in translational motion.  相似文献   

20.
In this paper, we investigate the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under‐resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high‐order spectral methods by using high‐order ansatz functions up to 12th order. We employ polynomial de‐aliasing techniques to prevent instabilities arising from inexact quadrature of nonlinearities. Without the need for any additional filtering, explicit or implicit modelling, or artificial dissipation, our high‐order schemes capture the turbulent flow at the considered Reynolds number range very well. Three classical large eddy simulation benchmark problems are considered: a circular cylinder flow at ReD=3900, a confined periodic hill flow at Reh=2800 and the transitional flow over a SD7003 airfoil at Rec=60,000. For all computations, the total number of degrees of freedom used for the discontinuous Galerkin spectral method simulations is chosen to be equal or considerably less than the reported data in literature. In all three cases, we achieve an equal or better match to direct numerical simulation results, compared with other schemes of lower order with explicitly or implicitly added subgrid scale models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号