首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThe aim of this work is to test the use of aqueous solutions of Ficoll®**, a highly branched polymer displaying crowding properties, to build a phantom suitable for Diffusion Weighted Imaging (DWI) in Magnetic Resonance Imaging (MRI).MethodsWe developed a test object made of a cylindrical plastic container with a precise geometrical arrangement suitable for measuring several samples at the same time. The container was designed to host single vials with variable geometry and number, and to fit inside common commercial head coils for MRI scanners.In our experiments, vials were filled with 8 aqueous solutions of Ficoll 70 and Ficoll 400 spanning a range of polymer concentration from 5 to 30% by weight. Vials containing ultra-pure water were also used as reference. Experiments were performed on both 1.5 and 3 T clinical scanners (GE, Philips and Siemens), under the conditions of a standard clinical examination.ResultsThe geometry of the phantom provided reduced imaging artifacts, especially image distortions at magnetic interfaces. We found that the Apparent Diffusion Coefficient (ADC) varied in the range of 0.00125–0.00223 mm2/s and decreased with Ficoll concentration. ADC vs Ficoll concentration exhibited a linear trend. Results were consistent over time and among different MRI clinical scanners, showing an average variability of 3% at 1.5 T and of 7.5% at 3 T. Moreover, no substantial difference was found between Ficoll 70 and 400. By varying Ficoll concentration, ADC can be modulated to approach tissue-mimicking values. Preliminary results for relaxation measurements proved that both T1 and T2 decreased with Ficoll concentration in the ranges 1.3–2.4 s and 150–800 ms respectively.ConclusionsIn this work, we propose a 3D phantom design based on the widespread crowding agent Ficoll, which is suitable for DWI quality assurance purposes in MRI acquisitions. Aqueous Ficoll solutions provide good performance in terms of stability, ease of preparation, and safety.  相似文献   

2.
BackgroundAchieving inter-site / inter-scanner reproducibility of diffusion weighted magnetic resonance imaging (DW-MRI) metrics has been challenging given differences in acquisition protocols, analysis models, and hardware factors.PurposeMagnetic field gradients impart scanner-dependent spatial variations in the applied diffusion weighting that can be corrected if the gradient nonlinearities are known. However, retrieving manufacturer nonlinearity specifications is not well supported and may introduce errors in interpretation of units or coordinate systems. We propose an empirical approach to mapping the gradient nonlinearities with sequences that are supported across the major scanner vendors.Study typeProspective observational study.SubjectsA spherical isotropic diffusion phantom, and a single human control volunteer.Field strength/sequence3 T (two scanners). Stejskal-Tanner spin echo sequence with b-values of 1000, 2000 s/mm2 with 12, 32, and 384 diffusion gradient directions per shell.AssessmentWe compare the proposed correction with the prior approach using manufacturer specifications against typical diffusion pre-processing pipelines (i.e., ignoring spatial gradient nonlinearities). In phantom data, we evaluate metrics against the ground truth. In human and phantom data, we evaluate reproducibility across scans, sessions, and hardware.Statistical testsWilcoxon rank-sum test between uncorrected and corrected data.ResultsIn phantom data, our correction method reduces variation in mean diffusivity across sessions over uncorrected data (p < 0.05). In human data, we show that this method can also reduce variation in mean diffusivity across scanners (p < 0.05).ConclusionOur method is relatively simple, fast, and can be applied retroactively. We advocate incorporating voxel-specific b-value and b-vector maps should be incorporated in DW-MRI harmonization preprocessing pipelines to improve quantitative accuracy of measured diffusion parameters.  相似文献   

3.
A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3 T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. In this study, simulations were used to determine alarm thresholds for minimal acceptable signal-to-noise ratio (SNR). Our results showed that spiking artifact was the most frequently observed type of artifact. Overall, Trio scanners exhibited less eddy current distortion than GE scanners, which in turn showed less distortion than Skyra scanners. This difference was mainly caused by the different sequences used on these scanners. The SNR for phantom scans was closely correlated with the SNR from volunteers. Nearly all of the phantom measurements with artifact-free images were above the alarm threshold, suggesting that the scanners are stable longitudinally. Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts.  相似文献   

4.
5.
PurposeTo explore the application of histogram analysis in preoperative T and N staging of gastric cancers, with a focus on characteristic parameters of apparent diffusion coefficient (ADC) maps.Materials and methodsEighty-seven patients with gastric cancers underwent diffusion weighted magnetic resonance imaging (b = 0, 1000 s/mm2), which generated ADC maps. Whole-volume histogram analysis was performed on ADC maps and 7 characteristic parameters were obtained. All those patients underwent surgery and postoperative pathologic T and N stages were determined.ResultsFour parameters, including skew, kurtosis, s-sDav and sample number, showed significant differences among gastric cancers at different T and N stages. Most parameters correlated with T and N stages significantly and worked in differentiating gastric cancers at different T or N stages. Especially skew yielded a sensitivity of 0.758, a specificity of 0.810, and an area under the curve (AUC) of 0.802 for differentiating gastric cancers with and without lymph node metastasis (P < 0.001). All the parameters, except AUClow, showed good or excellent inter-observer agreement with intra-class correlation coefficients ranging from 0.710 to 0.991.ConclusionCharacteristic parameters derived from whole-volume ADC histogram analysis could help assessing preoperative T and N stages of gastric cancers.  相似文献   

6.
BackgroundMR fingerprinting (MRF) is a versatile method for rapid multi-parametric quantification. The application of MRF for lower MRI field could enable multi-contrast imaging and improve exam efficiency on these systems. The purpose of this work is to demonstrate the feasibility of 3D whole-brain T1 and T2 mapping using MR fingerprinting on a contemporary 0.55 T MRI system.Materials and methodsA 3D whole brain stack-of-spirals FISP MRF sequence was implemented for 0.55 T. Quantification was validated using the NIST/ISMRM Quantitative MRI phantom, and T1 and T2 values of white matter, gray matter, and cerebrospinal fluid were measured in 19 healthy subjects. To assess MRF performance in the lower SNR regime of 0.55 T, measurement precision was calculated from 100 simulated pseudo-replicas of in vivo data and within-session measurement repeatability was evaluated.ResultsT1 and T2 values calculated by MRF were strongly correlated to standard measurements in the ISMRM/NIST MRI system phantom (R2 > 0.99), with a small constant bias of approximately 5 ms in T2 values. 3D stack-of-spirals MRF was successfully applied for whole brain quantitative T1 and T2 at 0.55 T, with spatial resolution of 1.2 mm × 1.2 mm × 5 mm, and acquisition time of 8.5 min. Moreover, the T1 and T2 quantifications had precision <5%, despite the lower SNR of 0.55 T.ConclusionA 3D whole-brain stack-of-spirals FISP MRF sequence is feasible for T1 and T2 mapping at 0.55 T.  相似文献   

7.

Purpose

The objective of this study was to evaluate diffusion anisotropy of the breast parenchyma and assess the range and repeatability of diffusion tensor imaging (DTI) parameters in normal breast tissue.

Materials and Methods

The study was approved by our institutional review board and included 12 healthy females (median age, 36 years). Diffusion tensor imaging was performed at 1.5 T using a diffusion-weighted echo planar imaging sequence. Diffusion tensor imaging parameters including tensor eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for anterior, central and posterior breast regions.

Results

Mean normal breast DTI measures were λ1=2.51×10−3 mm2/s, λ2=1.89×10−3 mm2/s, λ3=1.39×10−3 mm2/s, ADC=1.95±0.24×10−3 mm2/s and FA=0.29±0.05 for b=600 s/mm2. Significant regional differences were observed for both FA and ADC (P<.05), with higher ADC in the central breast and higher FA in the posterior breast. Comparison of DTI values calculated using b=0, 600 s/mm2 vs. b=0, 1000 s/mm2, showed significant differences in ADC (P<.001), but not FA. Repeatability assessment produced within-subject coefficient of variations of 4.5% for ADC and 11.4% for FA measures.

Conclusion

This study demonstrates anisotropy of water diffusion in normal breast tissue and establishes a normative range of breast FA values. Attention to the influence of breast region and b value on breast DTI measurements may be important for clinical interpretation and standardization of techniques.  相似文献   

8.
PurposeThis study aimed to assess the effect of echo spacing in transverse magnetization (T2) signal decay of gel and fat (oil) samples. Additionally, we assess the feasibility of using spin coupling as a determinant of fat content.MethodsPhantoms of known T2 values, as well as vegetable oil phantoms, were scanned at 1.5 T scanner with a multi echo FSE sequence of variable echo spacing above and below the empirical threshold of 20 ms for echo train signal modulation (6.7, 13.6, 26.8, and 40 ms). T2 values were calculated from monoexponential fitting of the data. Relative signal loss between the four acquisitions of different echo spacing was calculated.ResultsAgreement in the T2 values of water gel phantom was observed in all acquisitions as opposed to fat phantom (oil) samples. Relative differences in signal intensity between two successive sequences of different echo spacing on composite fat/water regions of interest was found to be linearly correlated to fat fraction of the ROI.ConclusionThe sample specific degree of signal loss that was observed between different fat samples (vegetable oils) can be attributed to the composition of each sample in J coupled fat components. Hence, spin coupling may be used as a determinant of fat content.  相似文献   

9.
Long-term monitoring of the average proton relaxation time T2 of phantoms measured on a Siemens MR whole-body imager showed very good repeatability and reproducibility. The repeatability (short-term precision) and reproducibility (long-term precision) of the average values of a relaxation time T2 approximately/= 81 ms, obtained by a standard 16-echo CPMG pulse sequence, were 2.6% and 9.7%, respectively. The Siemens Vision imager proved to be a suitable tool for T2 evaluation in vivo. Quality control was performed using the techniques of control diagrams developed by Shewhart, which proved to be an appropriate method for continuous quality control of relaxation time determination.  相似文献   

10.
BackgroundQuantification of pharmacokinetic parameters in dynamic contrast enhanced (DCE) MRI is heavily dependent on the arterial input function (AIF). In the present patient study on advanced stage head and neck squamous cell carcinoma (HNSCC) we have acquired DCE-MR images before and during chemo radiotherapy. We determined the repeatability of image-derived AIFs and of the obtained kinetic parameters in muscle and compared the repeatability of muscle kinetic parameters obtained with image-derived AIF's versus a population-based AIF.Materials and methodsWe compared image-derived AIFs obtained from the internal carotid, external carotid and vertebral arteries. Pharmacokinetic parameters (ve, Ktrans, kep) in muscle—located outside the radiation area—were obtained using the Tofts model with the image-derived AIFs and a population averaged AIF. Parameter values and repeatability were compared. Repeatability was calculated with the pre- and post-treatment data with the assumption of no DCE-MRI measurable biological changes between the scans.ResultsSeveral parameters describing magnitude and shape of the image-derived AIFs from the different arteries in the head and neck were significantly different. Use of image-derived AIFs led to higher pharmacokinetic parameters compared to use of a population averaged AIF. Median muscle pharmacokinetic parameters values obtained with AIFs in external carotids, internal carotids, vertebral arteries and with a population averaged AIF were respectively: ve (0.65, 0.74, 0.58, 0.32), Ktrans (0.30, 0.21, 0.13, 0.06), kep (0.41, 0.32, 0.24, 0.18). Repeatability of pharmacokinetic parameters was highest when a population averaged AIF was used; however, this repeatability was not significantly different from image-derived AIFs.ConclusionImage-derived AIFs in the neck region showed significant variations in the AIFs obtained from different arteries, and did not improve repeatability of the resulting pharmacokinetic parameters compared with the use of a population averaged AIF. Therefore, use of a population averaged AIF seems to be preferable for pharmacokinetic analysis using DCE-MRI in the head and neck area.  相似文献   

11.
PurposeHistogram analysis can better reflect tumor heterogeneity than conventional imaging analysis. The present study analyzed possible correlations between histogram analysis parameters derived from Intravoxel-incoherent imaging (IVIM) and histopathological features in rectal cancer (RC).MethodsSeventeen patients with histopathologically proven rectal adenocarcinomas were retrospectively acquired. In all cases, pelvic MRI was performed. Diffusion weighted imaging was obtained using a multi-slice single-shot echo-planar imaging sequence with b values of 0, 50, 200, 500 and 1000 s/mm2. Simplified IVIM analysis was performed using the IntelliSpace portal, version 10 and the following images were generated: f (perfusion fraction) map, D (true diffusion coefficient) map, and ADC map utilizing all b-values. Histogram based analysis of signal intensities was performed for every IVIM map using an in-house matlab tool. Histopathology was investigated using Ki 67 specimens with calculation of Ki 67-index and cellularity. CD31 stained specimens were used for calculation of microvessel density (MVD).ResultsThere were statistically significant correlations between Ki 67 index and mode derived from ADC as well as entropy from f, r=−0.50, p=.04 and r=−0.55, p=.02, respectively. MVD correlated well with parameters derived from f.ConclusionIVIM histogram analysis parameters can reflect histopathology in RC. ADC and D values are associated with proliferation potential. Perfusion fraction f is associated with MVD.  相似文献   

12.
Our purpose is to evaluate bias and repeatability of the quantitative MRI sequences QRAPMASTER, based on steady-state imaging, and variable Flip Angle MRF (MRF-VFA), based on the transient response.Both techniques are assessed with a standardized phantom and five volunteers on 1.5 T and 3 T clinical scanners. All scans were repeated eight times in consecutive weeks.In the phantom, the mean bias±95% confidence interval for T1 values with QRAPMASTER was 10 ± 10% on 1.5 T and 4 ± 13% on 3.0 T. The mean bias for T1 values with MRF-vFA was 21 ± 17% on 1.5 T and 9 ± 9% on 3.0 T. For T2 values the mean bias with QRAPMASTER was 12 ± 3% on 1.5 T and 23 ± 1% on 3.0 T. For T2 values the mean bias with MRF-vFA was 17 ± 1% on 1.5 T and 19 ± 2% on 3.0 T. QRAPMASTER estimated lower T1 and T2 values than MRF-vFA. Repeatability was good with low coefficients of variation (CoV). Mean CoV ± 95% confidence interval for T1 were 3.2 ± 0.4% on 1.5 T and 4.5 ± 0.8% on 3.0 T with QRAPMASTER and 2.7% ± 0.2% on 1.5 T and 2.5 ± 0.2% on 3.0 T with MRF-vFA. For T2 were 3.3 ± 1.9% on 1.5 T and 3.2 ± 0.6% on 3.0 T with QRAPMASTER and 2.0 ± 0.4% on 1.5 T and 5.7 ± 1.0% on 3.0 T with MRF-vFA.The in-vivo T1 and T2 are in the range of values previously reported by other authors.The in-vivo mean CoV ± 95% confidence interval in gray matter were for T1 1.7 ± 0.2% using QRAPMASTER and 0.7 ± 0.5% using MRF-vFA and for T2 were 0.9 ± 0.4% using QRAPMASTER and 2.4 ± 0.5% using MRF-vFA. In white matter were for T1 0.9 ± 0.3% using QRAPMASTER and 1.3 ± 1.1% using MRF-vFA and for T2 were 0.7 ± 0.4% using QRAPMASTER and 2.4 ± 0.4% using MRF-vFA. A GLM analysis showed that the variations in T1 and T2 mainly depend on the field strength and the subject, but not on the follow-up repetition in different days. This confirms the high repeatability of QRAPMASTER and MRF-vFA.In summary, QRAPMASTER and MRF-vFA on both systems were highly repeatable with moderate accuracy, providing results comparable to standard references. While repeatability was similar for both methods, QRAPMASTER was more accurate. QRAPMASTER is a tested commercial product but MRF-vFA is 4.77 times faster, which would ease the inclusion of quantitative relaxometry.  相似文献   

13.
BackgroundThe assumption that functional magnetic resonance imaging (fMRI) noise has constant volatility has recently been challenged by studies examining heteroscedasticity arising from head motion and physiological noise. The present study builds on this work using latest methods from the field of financial mathematics to model fMRI noise volatility.MethodsMulti-echo phantom and human fMRI scans were used and realised volatility was estimated. The Hurst parameter H ∈ (0, 1), which governs the roughness/irregularity of realised volatility time series, was estimated. Calibration of H was performed pathwise, using well-established neural network calibration tools.ResultsIn all experiments the volatility calibrated to values within the rough case, H < 0.5, and on average fMRI noise was very rough with 0.03 < H < 0.05. Some edge effects were also observed, whereby H was larger near the edges of the phantoms.DiscussionThe findings suggest that fMRI volatility is not only non-constant, but also substantially more irregular than a standard Brownian motion. Thus, further research is needed to examine the impact such pronounced oscillations in the volatility of fMRI noise have on data analyses.  相似文献   

14.
ObjectivesThe aim of this study was to use DKI to detect the microstructural change of the discs in matured normal rats.MethodsTotal 24 normal SD rats (12 males/12 females) underwent DWI/DKI and T2 sequences with a 3T MRI scanner to get the values of ADC, FA, MD, Da, Dr, MK, Ka and Kr. The discs were categorized using a five-grade degeneration grading system in the T2-images. The height of the discs and the parameters in DWI/DKI were measured to compare between the different grades and sexes. The histological images and the images of fiber tracking were also done in the discs.ResultsThere were 30 Grade 1 and 18 Grade 2 in the discs. Compared with Grade 1, decreased ADC, increased FA and MK values were observed in Grade 2 (P < 0.05). By the ROC analysis of grades of the discs, there was low diagnostic accuracy in ADC value, while FA and MK showed higher accuracy. In Grade 1, there were lower ADC value, lower Dr, higher MK, Ka and Kr in male's group than them in female's group. There were no differences in the parameters except the ADC value in the two sexes in Grade 2. The different microstructure of the normal discs in the male and female rats had been proved by the histological images and the images of fiber tracking.ConclusionDKI is a noninvasive and sustainable means to test the changes of intervertebral discs. The discs in Grade 2 were also found in the normal matured SD rat tails. The assessment of the grade of the discs in T2-images should be done before the experimental management. There was microstructural difference in the nucleus pulposus in the discs in Grade 1 and 2. FA and MK showed higher diagnostic accuracy. The laboratory rats should be the same sex because the microstructure of the normal discs weren't the same.  相似文献   

15.
ObjectiveMultiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging – Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need.MethodsWe here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200 s/mm2 and 600 s/mm2 were chosen, and for T2-estimation 6 echo times between 64.9 ms and 114.9 ms were used.ResultsThree patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation.ConclusionsThis sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification.  相似文献   

16.

Purpose

To evaluate the liver-to-muscle signal intensity and R2* methods to gain a transferable, clinical application for liver iron measurement.

Materials and Methods

Sixteen liver phantoms and 33 human subjects were examined using three 1.5-T MRI scanners from two different vendors. Phantom-to-muscle and liver-to-muscle signal intensity ratios were analyzed to determine MRI estimated phantom and hepatic iron concentration (M-PIC and M-HIC, respectively). R2* was calculated for the phantoms and the liver of human subjects. Seven patients' biochemical hepatic iron concentration was obtained.

Results

M-PIC and R2* results of three scanners correlated linearly to phantom iron concentrations (r=0.984 to 0.989 and r=0.972 to 0.981, respectively), and no significant difference between the scanners was found (P=.482 and P=.846, respectively) in vitro. The patients' R2* correlated linearly to M-HIC of the standard scanner (r=0.981). M-HIC values did not differ from those obtained from the biopsy specimens (P=.230). The difference in M-HIC was significant, but the difference in R2* was not significant between the scanners (P<.0001 and P=.505, respectively) in vivo.

Conclusion

Both methods, M-HIC and R2*, are reliable iron concentration indicators with linear dependence on iron concentration in vivo and in vitro. The R2* method was found to be comparable among different scanners. Transferability testing is needed for the use of the methods at various scanners.  相似文献   

17.
PurposeThis study aimed to investigate the prediction of early response to concurrent chemoradiotherapy (CCRT) through a combination of pretreatment multi-parametric magnetic resonance imaging (MRI) with clinical prognostic factors (CPF) in cervical cancer patients.MethodsEighty-five patients with pathologically confirmed cervical cancer underwent conventional MRI, intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI), and dynamic contrast-enhanced MRI (DCE-MRI) before CCRT. The patients were divided into non- and residual tumor groups according to post-treatment MRI. Univariable and multivariable analyses were performed to pretreatment MRI parameters and CPF between the two groups, and optimal thresholds and predictive performance for post-treatment residual tumor occurrence were estimated by drawing the receiver operating characteristic (ROC) curve.ResultsThere were 52 patients in non- and 33 in residual group. The residual group showed a lower perfusion fraction (f) value and volume transfer constant (Ktrans) value, a higher apparent diffusion coefficient (ADC) value, diffusion coefficient (D) value and volume fraction of extravascular extracellular space (Ve) value, and a higher stage than the non-residual tumor group (all P < .05). D, Ktrans, Ve and stage were independent prognostic factors. The combination of D, Ktrans and Ve improved the diagnostic performance compared with individual MRI parameters. A further combination of these three MRI parameters with stage exhibited the highest predictive performance.ConclusionsPretreatment D, Ktrans, Ve and stage were independent prognostic factors for cervical cancer. The predictive capacity of multi-parametric MRI was superior to individual MRI parameters. The combination of multi-parametric MRI with CPF further improved the predictive performance.  相似文献   

18.
This study presents gelatine-based and agar-based phantoms with an addition of glycerol, safflower oil, silicone oil and cellulose microcrystalline with a potential to cover the entire range of tissue diffusion coefficients and kurtosis values. Forty types of phantoms were prepared and examined for NMR relaxation times T1 and T2 and diffusional metrics D, K and ADC. Wide ranges of values of D (0.0003–0.0031 mm2s−1), K (0.00–7.24) and ADC (0.0002–0.0031 mm2s−1) were observed. Two of the phantoms closely mimic muscle and cortical gray matter with respect to water diffusion parameters. Although many of the presented phantoms display both D and K values within the range of human tissues, they match different tissues with respect to D and K. The imaging results for the gray matter simulating phantom injected with the liposomal solution, bear a resemblance to the particle size effect described in the literature. The phantoms presented in this work are simple in preparation and affordable tissue-simulating materials to be used primarily in development of diffusion kurtosis-based MRI methods and possibly in a preliminary assessment of MRI contrast agents. Further adjustments of the chemical compositions could potentially lead to development of new types of phantoms mimicking diffusional properties of more kinds of soft tissues.  相似文献   

19.
Omari E  Lee H  Varghese T 《Ultrasonics》2011,51(6):758-767
Quantitative ultrasound features such as the attenuation slope, sound speed and scatterer size, have been utilized to evaluate pathological variations in soft tissues such as the liver and breast. However, the impact of variations in the sound speed and backscatter due to underlying fat content or fibrotic changes, on the attenuation slope has not been addressed. Both numerical and acoustically uniform tissue-mimicking experimental phantoms are used to demonstrate the impact of sound speed variations on attenuation slope using clinical real-time ultrasound scanners equipped with linear array transducers. Radiofrequency data at center frequencies of 4 and 5 MHz are acquired for the experimental and numerical phantoms respectively. Numerical phantom sound speeds between 1480 and 1600 m/s in increments of 20 m/s for attenuation coefficients of 0.3, 0.4, 0.5, 0.6, and 0.7 dB/cm/MHz are simulated. Variations in the attenuation slope when the backscatter intensity of the sample is equal, 3 dB higher, and 3 dB lower than the reference is also evaluated. The sound speed for the experimental tissue-mimicking phantoms were 1500, 1540, 1560 and 1580 m/s respectively, with an attenuation coefficient of 0.5 dB/cm/MHz. Radiofrequency data is processed using three different attenuation estimation algorithms, i.e. the reference phantom, centroid downshift, and a hybrid method. In both numerical and experimental phantoms our results indicate a bias in attenuation slope estimates when the reference phantom sound speed is higher (overestimation) or lower (underestimation) than that of the sample. This bias is introduced via a small spectral shift in the normalized power spectra of the reference and sample with different sound speeds. The hybrid method provides the best estimation performance, especially for sample attenuation coefficient values lower than that of the reference phantom. The performance of all the methods deteriorates when the attenuation coefficient of the reference phantom is lower than that of the sample. In addition, the hybrid method is the least sensitive to sample backscatter intensity variations.  相似文献   

20.
PurposeTo determine magnetic resonance elastography (MRE)-derived stiffness of pancreas in healthy volunteers with emphasis on: 1) short term and midterm repeatability; and 2) variance as a function of age.MethodsPancreatic MRE was performed on 22 healthy volunteers (age range:20–64 years) in a 3 T–scanner. For evaluation of reproducibility of stiffness estimates, the scans were repeated per volunteer on the same day (short term) and one month apart (midterm). MRE wave images were analyzed using 3D inversion to estimate the stiffness of overall pancreas and different anatomic regions (i.e., head, neck, body, and tail). Concordance and Spearman correlation tests were performed to determine reproducibility of stiffness measurements and relationship to age.ResultsA strong concordance correlation (ρc = 0.99; p-value < 0.001) was found between short term and midterm repeatability pancreatic stiffness measurements. Additionally, the pancreatic stiffness significantly increased with age with good Spearman correlation coefficient (all ρ > 0.81; p < 0.001). The older age group (> 45 yrs) had significantly higher stiffness compared to the younger group (≤ 45 yrs) (p < 0.001). No significant difference (p > 0.05) in stiffness measurements was observed between different anatomical regions of pancreas, except neck stiffness was slightly lower (p < 0.012) compared to head and overall pancreas at month 1.ConclusionMRE-derived pancreatic stiffness measurements are highly reproducible in the short and midterm and increase linearly with age in healthy volunteers. Further studies are needed to examine these effects in patients with various pancreatic diseases to understand potential clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号