首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Large-Eddy Simulations are conducted on a centrifugal pump at design and reduced flow-rates for three diffuser geometries, to investigate the effect of changing the diffuser inlet angle on the overall performance and the pressure fields. In particular, pressure fluctuations are investigated, which affect the unsteady loads acting on the pump, as well as vibrations, noise and cavitation phenomena. The considered modification of the diffuser geometry is targeted at decreasing the incidence angle at the off-design flow-rate by rotating the stationary blades of the pump around their leading edge. Results are compared against those of an earlier study, where the same modification of the diffuser inlet angle was achieved by increasing also the radial gap between impeller and diffuser, whose blades were rotated relative to their mid camber location. The comparisons across cases demonstrate that the radial gap between the trailing edge of the impeller blades and the leading edge of the diffuser blades has a more profound influence on pressure fluctuations, compared to the angle of incidence on the diffuser blades of the flow coming from the impeller.  相似文献   

2.
A coupled experimental/numerical analysis of turbulent flow past a square cylinder is performed at the ERCOFTAC Reynolds number Re = UD/ν = 21,400, where U is the inflow velocity and D the cylinder height. Complementary Laser Doppler Velocimetry (LDV) and high-order large-eddy simulations (LES) approaches, based on a spectral vanishing technique (SVV-LES), provide a comprehensive data base including both instantaneous data and post-processed statistics. Beyond these results, an achievement of the paper is to investigate the coherent structures developing on the sides and in the wake of the cylinder with a special focus on the flow features in the near-wall region. The flow is found to separate at the leading edge of the cylinder with the occurence of three-dimensional Kelvin-Helmholtz (KH) pairings localized in the separating shear layer. The interaction between these KH vortical structures and Von Kármán vortex shedding (VK) in the near wake is discussed based on both visualisations and frequency analysis. In particular, signatures of VK and KH vortical structures are found on velocity time samples.  相似文献   

3.
This work presents the application of particle image displacement velocimetry to the measurement of fluid velocities in a centrifugal pump diffuser. Measurements are taken at different operating points and allow to define the variation of radial and tangential velocity components along a pitch. They are further processed to determine the relative velocity and vorticity fields. Results are also compared with laser Doppler measurements taken in the same facility.  相似文献   

4.
5.
We experimentally study the three-dimensional structure of the spiral instability observed on the periphery of a opened rotor–stator cavity with suction. We use the stereoscopic Particles Images Velocimetry technique which gives sequences of maps of the three velocity components of fluid particles located in a meridian plane. This sequence is acquired with a low frequency during the running of a great number of structures. The originality of this study consists in an optimized temporal reclassifying of the maps on a single period that allows a three-dimensional reconstitution of the instability. To cite this article: D. Rémy et al., C. R. Mecanique 332 (2004).  相似文献   

6.
In this paper, by combining the boundary element method (BEM) and peridynamics (PD), a bubble-ice interaction model is established, which can investigate the dynamic interactions between a high-pressure bubble and an ice plate with particular focus on the mechanical behaviors of ice breaking. The bubble dynamics are solved by BEM based on the potential flow theory. Ice cracks initiation and propagation are simulated by the bond-based peridynamics which is validated by a three-point bending test. The fluid–structure interaction (FSI) is achieved by matching the normal velocity and hydrodynamic loads at the fluid–structure interface. To validate the proposed FSI model, an experiment is carried out in which an oscillating bubble is generated under an ice plate by underwater discharge system. The whole interaction process is captured by a Phantom V711 high-speed camera. Qualitative agreements are achieved between the numerical and experimental results. The underlying mechanism of cracks initiation, propagation, branching, and coalescence of the ice plate is found to highly depend on three parameters, i.e., bubble–ice distance, ice thickness and bubble size. The present study is expected to provide further assists in the understanding of ice breaking problems.  相似文献   

7.
The purpose of this paper is to investigate the flow patterns in a centrifugal pump when it works as a centripetal turbine, with special interest in the unsteady behavior in order to explain the shape of the performance curves. Also, we focus on the determination of the radial thrust and other mechanical loads over a pump‐designed machine. The pump studied is commercial, with single axial suction and a vaneless spiral volute casing. A numerical study has been carried out in order to obtain more information about the flow into the volute and the impeller. A numerical three‐dimensional unsteady simulation has been developed using a commercial code that solves the URANS set of equations with a standard k–ε turbulence model. The results show the non‐axisymmetric flow developed in the volute, responsible for a significant radial thrust; the interaction between the tongue and the impeller, generating force fluctuations; the velocity and pressure distributions inside the impeller; and the exit flow, characterized with post‐rotation and low‐pressure. These flow results allow us to understand the behavior of the machine by comparing it with the pump mode. Complementarily, an experimental study was conducted to validate the numerical model and characterize the pump‐turbine performance curves at constant head. Fast‐response pressure taps and a three‐hole pneumatic pressure probe were employed to obtain a complete data set of non‐stationary and stationary measurements throughout the centrifugal machine. As a result, loss of efficiency or susceptibility to cavitation, detected numerically, was confirmed experimentally. The study demonstrates that the numerical methodology presented here has shown its reliability and possibilities to predict the unsteady flow and time‐mean characteristics of centrifugal pumps working as turbines. In particular, it is shown that the commercial design of the pump allows a reasonable use of the impeller as a turbine runner, due to the suitable adaptation of the inflow distributions to the volute casing. Moreover, the efficiency for the inverse mode is shown to be as high as achieved for the pumping operational mode. In addition, it is concluded that both axial and radial thrusts are controlled, though important unsteady fluctuations—up to 25%—clocked with the blade passing frequency appear beyond the nominal conditions. In that case, a moderate use of the pump as a turbine is recommended in order to minimize risks of fatigue failure of the bearings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Rain–wind induced vibration is an aeroelastic phenomenon that occurs on the inclined cables of cable-stayed bridges and arises due to the interaction between the unsteady wind loading and the formation of water rivulets on the cable surface. A new numerical method has been developed at the University of Strathclyde to simulate the influence of the external flow field on the rivulet dynamics and vice versa. The approach is to couple a Discrete Vortex Method solver to determine the external flow field and unsteady aerodynamic loading, and a pseudo-spectral solver based on lubrication theory to model the evolution and growth of the water rivulets on the cable surface under external loading. Results of this coupled model are presented, to provide detailed information on the development of water rivulets and their interaction with the aerodynamic field. In particular, the effect of the initial water film thickness and the angle of attack in plane on the resulting rivulets are investigated. The results are consistent with previous full scale and experimental observations with rivulets forming on the upper surface of the cable only in configurations where rain–wind induced vibration has been observed. Additionally, the thickness of the lower rivulet is found to be self-limiting in all configurations. The results demonstrate that the model can be used to enhance the understanding of the underlying physical mechanisms of rain–wind-induced vibration.  相似文献   

9.
The droplet dynamics passing through a cylinder obstruction was investigated with direct numerical simulations with FE-FTM (Finite Element-Front Tracking Method). The effect of droplet size and capillary number (Ca) was studied for both Newtonian and viscoelastic fluids. In the case of Newtonian droplet immersed in Newtonian medium, the droplet breakup induced by the geometric hindrance depends on the droplet size. As Ca increases, the short droplets (1.3 times longer than the channel width) break up while passing through the obstruction. However, the breakup does not occur for longer droplets (1.8 times longer than the channel width). When the viscoelastic fluid characterized by the Oldroyd-B model is considered, the Newtonian droplet immersed in viscoelastic medium breaks up into two smaller droplets while passing through the cylinder obstruction with increasing Dem (Deborah number of the medium). We also show that the normal stress difference plays a key role on the droplet breakup and the droplet extension. The normal stress difference is enhanced in the negative wake region due to the droplet flow, which also promotes droplet extension in that region. This numerical study provides information not only on underlying physics of the droplet flows passing through a cylinder obstruction but also on the useful guidelines for microfluidic applications.  相似文献   

10.
Flow through the spiral casing of a hydraulic turbine was analyzed. Reynolds averaged Navier–Stokes equations were solved using a finite element method. The physical domain was divided into a number of hexahedral elements which are isoparametrically mapped onto standard cubic elements. Numerical integration for the unsteady momentum equation is performed over such hexahedral elements to obtain a provisional velocity field. Compliance with the mass conservation equation and determination of the pressure correction are accomplished through an iterative procedure. The velocity distribution inside the spiral casing corroborates the results available in literature. The static pressure at the midplane generally decreases from the outside wall towards the exit of the spiral casing. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Recently, the author and two other coauthors have proposed a two-dimensional hybrid local domain-free discretization and immersed boundary method (LDFD-IBM), which can be used to solve the flow problem with complex geometries. In this paper, the LDFD-IBM is extended to solve a three-dimensional unsteady incompressible flow with the complex computational domain. The technical issues related to the implementation of the LDFD-IBM in three-dimensional problems are discussed in detail, particularly for the discretization of Navier-Stokes equations, mesh strategies for a three-dimensional flow, and the fast algorithm on the identification of the status of mesh nodes (ie, to identify if the mesh node is located in the solid domain, in the fluid domain, or near the immersed boundary). Numerical tests show that the LDFD-IBM can accurately solve three-dimensional incompressible problems with ease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号