首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effectiveness of cross wire in controlling the mixing characteristics of a circular and an equivalent elliptic jet is investigated experimentally. While circular jets are conventional, elliptic jets have gained attention due to their better mixing characteristics and faster decay. To further explore and augment the capabilities of elliptic jets for practical utility, it is investigated whether using an elliptic jet with cross wire control gives additional benefit in terms of mixing enhancement over an axisymmetric jet. Experiments are performed for subsonic and choked flow conditions with nozzle pressure ratios ranging from 1.2 to 7.0. Time-averaged pitot pressures and schlieren visualization is used for diagnosis. The jet bifurcation can be seen in controlled elliptical jets at all nozzle pressure ratios (NPRs). Core length is reduced to as much as 70% in the elliptical jet and 84% in the case of the circular jet. The core length values estimated from the present data are compared with the previous investigations.  相似文献   

2.
A numerical simulation of a rectangular surface jet is performed at a Reynolds number of Rej=4400. The global parameters of the jet e.g. maximum velocity decay, jet surface normal and lateral spread rates, entrainment, jet momentum flux and turbulent momentum flux are in agreement with several other studies reported in the literature. It is shown that the mean velocity and Reynolds stress profiles scale with the maximum local streamwise velocity and jet half width in the surface normal and lateral directions. The current simulation provides balance, explicitly calculated budgets for the turbulence kinetic energy, Reynolds normal and shear stresses. The surface jet develops a thin layer of fast moving fluid in the lateral direction near the surface. This layer is called the ‘surface current’. It has been suggested that the surface current arises due to the Reynolds stress anisotropy in the near surface region. The current study shows that this explanation is incomplete. The turbulence production for the Reynolds stress in the lateral direction is negative, which can drive the mean flow in the lateral direction. The higher level of negative production in the near surface region is responsible for the development of the surface current.  相似文献   

3.
4.
5.
6.
Axisymmetric turbulent boundary layers that develop around streamwise oriented long cylinder-like objects can be found in many applications, such as towed array sonars or marine seismic streamers. In many of these applications, turbulent fluctuations within the boundary layer flow can have a negative impact compared with laminar flow conditions. The aim of the present work is to design a surface modification that influences the turbulent boundary layer around a cylinder in axial flow in order to reduce turbulent fluctuations. To design the surface we consider recent findings regarding the turbulence damping effects of groove-like surface structures and combine these insights with the effect of convex transverse curvature on turbulence. We use large-eddy simulations to investigate the flow around a cylinder of modified design and around a reference circular cylinder. Both flows have a radius-based Reynolds number of Rea1.23104. The modified design leads to a 20 % decrease in the average wall shear stress and results in local reductions in the turbulent intensities, Reynolds stress, the temporal velocity spectrum, and the turbulent dissipation rate. The analysis within the anisotropy-invariant space reveals a tendency towards flow relaminarization. However, the new design has no effect on turbulent pressure fluctuations. We provide suggestions on how to further improve the surface design to achieve even greater flow stabilization.  相似文献   

7.
8.
9.
10.
11.
A fully developed turbulent channel flow controlled by traveling wave-like wall deformation under a constant pressure gradient condition is studied numerically and theoretically. First, direct numerical simulation (DNS) at three different friction Reynolds numbers, Reτ=90, 180, and 360, are performed to investigate the modification in turbulence statistics and their scaling. Unlike the previous study assuming a constant flow rate condition, suppression of the quasi-streamwise vortices is not observed in either drag decrease cases or drag increase cases. It is found in the drag reduction case, however, that the periodic component of the Reynolds shear stress (periodic RSS) is largely negative in the viscous sublayer and the buffer layer. For the maximum drag reduction case, the set of control parameters is found to be identical in wall units regardless of the Reynolds number, and the resulting mean velocity profiles are also observed to be approximately similar even with an additional case of Reτ=720. Based on this scaling, we propose a semi-empirical formula for the mean velocity profile modified by the present control. With this formula, about 20%25% drag reduction effect is predicted even at practically high Reynolds numbers, Reτ105106.  相似文献   

12.
13.
14.
15.
16.
2D numerical simulations of tidal bores were obtained using the OpenFOAM CFD software to solve the Navier–Stokes equations by means of the Finite Volume Method by applying a LES turbulence model. The trajectories of non-cohesive sediment particles beneath tidal bores were estimated using a tracker method. Using the fourth order Runge–Kutta scheme, the tracker method solves the Maxey and Riley equations, which requires the knowledge of the velocity field at time t. From 2D numerical simulations of tidal bores, we proposed a classification of tidal bores with respect to the Froude number Fr (or r the ratio of water depths). For a Froude number 1<Fr<1.43 (1<r<1.57), the tidal bore is undular. For a Froude number 1.43<Fr<1.57 (1.57<r<1.75), the tidal bore is partially breaking, which is similar to the transitional tidal bore defined by Furgerot (2014). And for a Froude number Fr>1.57 (r>1.75), the tidal bore is totally breaking. The numerical results of trajectories of non-cohesive sediment particles are similar to the type of trajectories given by the analytical model proposed by Chen et al. (2012) with some modifications to take into account the effects of gravity, elevation, and attenuation. The parameters of modified Chen's model, β1, β2 and β3, are linearly proportional to the Froude number Fr. This is because the level of turbulence for undular tidal bores is low. The flow induced by an undular tidal bore is not complex. This physical phenomenon is quasi linear. The parameter β1, related to the front celerity of the undular tidal bore, decreases when the Froude number Fr increases. The parameter β2, related to the elevation, increases when the Froude number Fr increases. And the parameter β3, related to the attenuation of the secondary waves, increases when the Froude number Fr increases.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号