首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Optimizing the efficiency of rubber-tracked undercarriages requires models for calculating external and internal motion resistance, including the resistance resulting from bending of rubber tracks. The experiments on the bending resistance of rubber tracks and a new model of this phenomenon are discussed in this article. An empirical model of friction in bearings typically implemented in driving and idler wheels of rubber-tracked undercarriages is also presented. According to the sample computations carried out on the basis of these models, the efficiency of rubber-tracked undercarriages might be improved by minimizing the number and maximizing the diameter of idler wheels. Furthermore, it has been shown that increase in the initial tension and driving force transmitted by rubber tracks does not significantly affect bending resistance of these tracks; however, it results in increased friction in the driving and idler wheels’ bearings. Nevertheless, the higher the driving force transmitted by the rubber tracks, the higher the efficiency of rubber-tracked undercarriages. Consequently, since track systems of vehicles operating at relatively small drawbar pull will manifest exceptionally low efficiency, there is a serious need for optimizing them in terms of energy consumption.  相似文献   

2.
This article summarizes the known methods for calculating the internal resistance of tracked undercarriages. The values of the coefficient of internal resistance for sample tracked vehicles are available in the literature and presented in this paper. Although they are suitable for simple computations, they cannot be used to optimize the energy efficiency of new generation tracked undercarriages. This problem might be solved by the models where every phenomenon leading to energy dissipation during vehicle motion is described by a separate submodel as a function of vehicle speed, track tension, undercarriage layout, design features of the undercarriage components, etc. This kind of model is still missing for vehicles with conventional rubber tracks. The article presents multiple state-of-the-art models describing rolling resistance of road wheels, bending resistance of rubber belts, etc., including the models of belt conveyors resistance. A vast majority of the phenomena discussed herein are described by several incompatible models whose parameters have not yet been determined for conventional rubber tracks. Consequently, in the second and the third part of the article, the authors have undertaken a theoretical and experimental studies on the methods for calculating and optimizing the internal motion resistance of vehicles with conventional rubber tracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号