首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the clinical MRI practice, it is common to assess liver iron overload by T2* multi-echo gradient-echo images. However, there is no full consensus about the best image analysis approach for the T2* measurements. The currently used methods involve manual drawing of a region of interest (ROI) within MR images of the liver. Evaluation of a representative liver T2* value is done by fitting an appropriate model to the signal decay within the ROIs vs. the echo time. The resulting T2* value may depend on both ROI placement and choice of the signal decay model. The aim of this study was to understand how the choice of the analysis methodology may affect the accuracy of T2* measurements. A software model of the iron overloaded liver was inferred from MR images acquired from 40 thalassemia major patients. Different image analysis methods were compared exploiting the developed software model. Moreover, a method for global semiautomatic T2* measurement involving the whole liver was developed. The global method included automatic segmentation of parenchyma by an adaptive fuzzy-clustering algorithm able to compensate for signal inhomogeneities. Global liver T2* value was evaluated using a pixel-wise technique and an optimized signal decay model. The global approach was compared with the ROI-based approach used in the clinical practice. For the ROI-based approach, the intra-observer and inter-observer coefficients of variation (CoVs) were 3.7% and 5.6%, respectively. For the global analysis, the CoVs for intra-observers and inter-observers reproducibility were 0.85% and 2.87%, respectively. The variability shown by the ROI-based approach was acceptable for use in the clinical practice; however, the developed global method increased the accuracy in T2* assessment and significantly reduced the operator dependence and sampling errors. This global approach could be useful in the clinical arena for patients with borderline liver iron overload and/or requiring follow-up studies.  相似文献   

2.
Magnetic Resonance Spectroscopic Imaging (MRSI) is a technique for imaging spatial variation of metabolites and has been very useful in characterizing biochemical changes associated with disease as well as response to therapy in malignant pathologies. This work presents a self-calibrated undersampling to accelerate 3D elliptical MRSI and an extrapolation-reconstruction algorithm based on the GRAPPA method. The accelerated MRSI technique was tested in three volunteers and five brain tumor patients. Acceleration allowed larger spatial coverage and consequently, less lipid contamination in spectra, compared to fully sampled acquisition within the same scantime. Metabolite concentrations measured from the accelerated acquisitions were in good agreement with measurements obtained from fully sampled MRSI scans.  相似文献   

3.
We determined the utility of fast gradient echo techniques (modified Dixon method) in the assessment of hepatic fat content. Fast spoiled gradient echo was performed on bovine liver/corn oil homogenates with known fat fractions (FFE) to assess the accuracy of fat quantitation (FFMRI). The pulse sequence was manipulated via alterations in TE (echo time), TR (repetition time), and α (flip angle). In vivo studies were then performed using breath-holding maneuvers on normal adult volunteers and subjects at risk to develop hepatic steatosis, with cystic fibrosis or morbid obesity. At out-of-phase, TE, TR, and α were 2.1 ms, 7.3 ms, and 30–50° and in-phase TE, TR, and α were 4.2 ms, 9.3 ms, and 30–50°; FFMRI correlated well with FFE. An elevated fat fraction was observed in a high percentage of subjects with cystic fibrosis and morbid obesity. Fast gradient echo techniques were used successfully in the assessment of hepatic steatosis. The reduced acquisition times permitted in vivo analysis on adults and children using breath hold maneuvers.  相似文献   

4.

Purpose

To prospectively evaluate the feasibility of diffusion-weighted magnetic resonance imaging (DWI) for monitoring early treatment response to chemoradiotherapy (CRT) of nasopharyngeal carcinoma (NPC).

Materials and methods

Thirty-one patients with stage III and IV NPC were enrolled in this study from February 2012 to November 2012.T2-weighted and DWI sequences with diffusion factor of 0 and 800mm²/s were performed using a 3.0 T Philips Achieva TX scanner at baseline and 3 days, 20 days (after the first cycle of chemotherapy), 50 days (6 days after radiotherapy initiation) after neoadjuvant chemotherapy (NAC) initiation. The diameter of each primary lesion and target metastatic lymph node before and after the first cycle of NAC was measured and classified into stable disease (SD), partial response (PR) or completed response (CR) based on RECIST 1.1. The apparent diffusion coefficient (ADC) values and changes compared to baseline at each time point were compared between responders (CR and PR) and non-responders (SD). The rates of residual at the end of CRT were compared between these two groups.

Results

A significant increase in ADC was observed at each stage of therapy (P=.001) in lesions of primary and metastatic. The ADC values (ADC), ADC changes (ΔADC) and percentage ADC changes (Δ%ADC) of day 20 in responders were significantly higher than in non-responders for both primary lesions (p=.005, p=.006, p=.008, respectively) and metastatic lymph nodes (p=.002, p=.002, p=.003). Non-responders showed a higher rate of residual for both primary lesions (p=.008) and metastatic lymph nodes (p=.024) than responders.

Conclusions

DW MR imaging allows for detecting early treatment response of NPC. Patients with high ADC values and large ADC increase early after NAC initiation tended to respond better to CRT. Thus, accessing the curative effect of NAC in advanced NPC provides the opportunity to adjust following CRT regimen.  相似文献   

5.
In magnetic resonance (MR) imaging of small animals, the gastrointestinal contents may give rise to intense signals on T1-weighted images. The aim of this study was to determine the optimal dietary preparation to reduce gastrointestinal signals in mice and to evaluate the usefulness of this approach. Images of the mouse trunk were obtained using a T1-weighted, three-dimensional fast low-angle shot sequence under various dietary conditions and were compared with respect to the gastrointestinal signals and image quality. The dietary preparation studied included giving alternative diets for 24 h, intestinal cleansing, and 6-h fasting. Mice with and without dietary preparation underwent MR lymphography using gadofluorine 8, and the visualization of abdominal lymph nodes was compared. In the absence of dietary preparation, hyperintense areas were conspicuous in the gastrointestinal system, whereas on the images taken from mice fed potato or sweet potato for 24 h before imaging, gastrointestinal hyperintensity was less prominent. This preparation also reduced artifactual signals and resulted in higher-quality images of the kidneys. Intestinal cleansing, which consisted of 24-h fasting and laxative intake, did not reduce the gastrointestinal signals and caused signal changes that were indicative of fatty liver development. Some of the abdominal lymph nodes of the mice that did not receive dietary preparation were visualized on MR lymphography source images but not on maximum intensity projection (MIP) images. In contrast, on the MIP images of mice fed potato, all the lymph nodes delineated on the source images were successfully visualized. In conclusion, feeding mice potato or sweet potato for 24 h before MR imaging reduces the gastrointestinal signals and image degradation due to artifacts. Appropriate dietary preparations facilitate the display of target structures on MIP images and are expected to enhance the capabilities of small animal MR imaging.  相似文献   

6.
To assess the reproducibility of quantitative measurements of cartilage morphology and trabecular bone structure of the knee at 7 T, high-resolution sagittal spoiled gradient-echo images and high-resolution axial fully refocused steady-state free-precession (SSFP) images from six healthy volunteers were acquired with a 7-T scanner. The subjects were repositioned between repeated scans to test the reproducibility of the measurements. The reproducibility of each measurement was evaluated using the coefficient(s) of variation (CV). The computed CV were 1.13% and 1.55% for cartilage thickness and cartilage volume, respectively, and were 2.86%, 1.07%, 2.27% and 3.30% for apparent bone volume over total volume fraction (app.BV/TV), apparent trabecular number (app.Tb.N), apparent trabecular separation (app.Tb.Sp) and apparent trabecular thickness (app.Tb.Th), respectively. The results demonstrate that quantitative assessment of cartilage morphology and trabecular bone structure is reproducible at 7 T and motivates future musculoskeletal applications seeking the high-field strength's superior signal-to-noise ratio.  相似文献   

7.
In vivo 1H magnetic resonance imaging (MRI), chemical shift selective imaging (CSI), and localized (VOSY) 1H magnetic resonance spectroscopy (MRS) were used to study fatty infiltration in the livers of rats chronically fed an ethanol-containing all-liquid DeCarli-Lieber diet. Conventional total proton MRI showed a somewhat hyperintense liver for ethanol-fed rats, compared with pair-fed controls. CSI showed a dramatic increase in the fat signal intensity for ethanol-treated rats that was fairly homogeneous throughout the liver. However, CSI also showed a substantial decrease in the water signal intensity for the ethanol-treated rats compared to pair-fed control rats. 1H VOSY MR spectra also showed a 5.5-fold increase in the methylene resonance (1.3 ppm) of fat and a 50-70% decrease in the water resonance (4.8 ppm). Relative in vivo proton T1 and T2 relaxation times for the water resonance separate from the fat resonance, determined from modified VOSY experiments, were found to tend to increase and decrease, respectively, for ethanol-treated rat livers compared with controls. The decrease in hepatic water signal intensity could be accounted for by the decrease in T2 and decrease in water density due to the presence of accumulated hepatic fat (approximately 25 mg/g wet weight of liver). When ethanol was withdrawn from the chronically treated rats, fatty infiltration was observed by both CSI and VOSY spectra to revert toward control values with a half-life of 2-4 days. By day 16, however, the signal intensity for hepatic fat was still significantly higher than control levels. In vitro 1H MRS studies of chloroform-methanol extracts confirmed the 5.5-fold increase in total hepatic fat induced by the chronic ethanol treatment, and showed further that triacylglycerols were increased 7.7-fold, cholesterol was increased fourfold, and phospholipids were increased 3.3-fold, compared with liver extracts from pair-fed control rats.  相似文献   

8.
Malignant glioma is a rare tumor type characterized by prominent vascular proliferation. Antiangiogenic therapy with the monoclonal antibody bevacizumab is considered as a promising therapeutic strategy, although the effect on tumor vascularization is unclear. High-field susceptibility-weighted imaging (SWI) visualizes the microvasculature and may contribute to the investigation of antiangiogenic therapy responses in gliomas. We prospectively studied five adult malignant glioma patients treated with bevacizumab-containing regimens. In each patient, we performed three 7-T SWI and T1-weighted imaging investigations (baseline and 2 and 4 weeks after the start of bevacizumab treatment). In addition, we imaged a postmortem brain of a patient with glioblastoma using 7-T SWI and performed detailed histopathological analysis. We observed almost total resolution of brain edema in three of five patients after initiation of bevacizumab therapy. In one case with rapid increase of the lesion size despite bevacizumab therapy, SWI showed progressive increase of irregular hypointense structures, most likely corresponding to increasing amounts of pathological microvasculature. In one case with progressive neurological decline, 7-T images showed multiple intratumoral microhemorrhages after the first bevacizumab application. Correlation of postmortem neuroimaging with histopathology confirmed that SWI-positive structures correspond to tumor vasculature. The experience from our case series indicates that longitudinal 7-T SWI seems to be an appropriate method for investigation of changes in brain tumor vascularization over time under antiangiogenic therapy.  相似文献   

9.

Background and Purpose

Fluid-sensitive MR imaging in postoperative evaluation is important, however, metallic artifacts is inevitable. The purpose is to investigate the feasibility of fat-saturated slice encoding for metal artifact correction (SEMAC)-corrected T2-weighted magnetic resonance (MR) at 3T in patients with spinal prostheses.

Methods

Following institutional review board approval, 27 SEMAC-encoded spinal MRs between September 2012 and October 2013 in patients with spinal metallic prostheses were analyzed. The MR images were scanned on a 3T MR system including SEMAC-corrected and uncorrected fast spin echo (FSE) T2-weighted MR images with fat-saturation. Two musculoskeletal radiologists compared the image sets and qualitatively analyzed the images using a five-point scale in terms of artifact reduction around the prosthesis, visualization of the prosthesis and pedicle, and intervertebral neural foramina. Quantitative assessments were performed by calculating the ratio of signal intensity from the fixated vertebra and that from upper level vertebra. For statistical analyses, paired t-test was used.

Results

Fat-saturated SEMAC-corrected T2-weighted MR images enabled significantly improved metallic artifact reduction (P < 0.05). Quantitative evaluation of the signal intensity ratio of screw-fixated vertebra and upper level vertebra showed a significantly lower ratio on fat-saturated SEMAC images (P < 0.05), however, the high signal intensity of signal pile-up could be not completely corrected.

Conclusion

SEMAC correction in fat-suppressed T2-weighted MR images can overcome the signal loss of metallic artifacts and provide improved delineation of the pedicle screw and peri-prosthetic region. Signal pile-up, however, could not be corrected completely, therefore readers should be cautious in the evaluation of marrow around the prosthesis.  相似文献   

10.
11.
Respiratory-gated proton magnetic resonance imaging was used to study the response of the rat liver in situ to bromobenzene, a classic hepatotoxicant. A localized region of high proton signal intensity in the perihilar region of the liver was seen 24-48 hr after an intraperitoneal injection of bromobenzene. Localized proton magnetic resonance spectra from within this region indicated that the increased proton signal intensity was not due to accumulation of fat in the liver, but primarily due to a longer T2 for the proton resonance of water. This is consistent with acute edema in this localized region. In vivo 31P magnetic resonance spectroscopy studies of the same rat livers in situ were performed. Spectroscopic conditions were determined whereby localized, quantitative 31P spectra could be obtained. Using these methods, 10 mmol/kg bromobenzene was found after 24 hr to cause a number of statistically significant (p less than 0.05) effects: a decrease in adenosine 5'-triphosphate levels from 4.1 +/- 0.5 to 3.0 +/- 0.5 mM, a decrease in phosphodiester levels from 11.3 +/- 0.9 to 9.3 +/- 0.7 mM and an increase in the phosphomonoesters from 3.0 +/- 0.4 to 5.5 +/- 1.2 mM (mean +/- standard deviation). High resolution in vitro 31P spectra of perchloric acid extracts of these rat livers showed that the increased phosphomonoester resonance was due to a selective 4.3-fold increase in phosphocholine. Thus, our in vivo and in vitro 31P magnetic resonance spectra are consistent with the hypothesis that a phosphatidylcholine-specific phospholipase C (generating phosphocholine and diacylglycerol) is activated during tissue damage. Both the imaging and spectroscopy results obtained with bromobenzene closely resemble CCl4-induced liver changes previously reported, and may reflect a generalized response of the liver to any acutely acting toxic chemical.  相似文献   

12.
In an attempt to better delineate the abnormalities associated with focal cortical dysgenesis, we performed curvilinear reformatting of the cortex from 3D magnetic resonance (MR) images. Illustrative patients with partial seizures and conventional orthogonal MRI evaluation show that small regions of cortical thickening suggestive of focal dysplastic lesions may not be recognized. In three such patients the curvilinear reformatting demonstrated two additional focal abnormalities of the cortical gyri and better defined the two focal lesions found on conventional orthogonal MR images. This method promises to a be useful tool in the evaluation of epileptic patients with proven or suspected subtle structural cortical abnormalities, particularly focal neuronal migration disorders where cortical thickening, abnormal gyral pattern, and poor delineation of the gray-white matter transition are the main findings.  相似文献   

13.
We report a case of a 55-year-old woman with polycystic liver disease that we examined with magnetic resonance (MR) imaging, CT and ultrasound. The MR images demonstrated varying intensities in the cyst contents which we believe is due to different degrees and age of hemorrhage. Such variability among the cysts was not seen on the CT or ultrasound images.  相似文献   

14.
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b = 600 s/mm2 (P = 0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P = 0.008 and 0.000 for b-value = 0 s/mm2 and 600 s/mm2 respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0 mm/pixel to 1.25 mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases.  相似文献   

15.
Gd2O3 particles (less than 2 microns) in suspension were evaluated as a potential contrast agent for liver-spleen imaging with magnetic resonance. The agent was administered IV to rabbits in doses ranging from 10 to 120 mumol/kg and the tissues removed after sacrifice for in vitro T1 and T2 analysis. The temporal response was determined in liver and spleen samples of rabbits given a fixed dose (60 mumol/kg) and sacrificed at intervals from 15 min to 60 hr later. Documentation of the subanatomic location of Gd2O3 particles in tissue was accomplished by electron microscopy and x-ray dispersion microanalysis. T1 weighted images were obtained at 0.12T on a prototype resistive scanner. The liver, spleen, and lung relaxation times are very responsive to Gd2O3 IV and the effect is dose related. A peak effect is observed between 3-7 hr after injection and relaxation times may normalize by 60 hr. By electron microscopic and x-ray analysis, Gd2O3 is most prominently found in the hepatic and splenic sinusoids. The images show marked enhancement of liver and splenic tissues, aiding in the clear delineation of these tissues from neighboring structures.  相似文献   

16.

Background

Cardiac magnetic resonance imaging (CMR) can accurately determine infarct size. Prior studies using indirect methods to assess infarct size have shown that patients with larger myocardial infarctions have a worse prognosis than those with smaller myocardial infarctions.

Objectives

This study assessed the prognostic significance of infarct size determined by CMR.

Methods

Cine and contrast CMR were performed in 100 patients with coronary artery disease (CAD) undergoing routine cardiac evaluation. Infarct size was determined by planimetry. We used Cox proportional hazards regression analyses (stepwise forward selection approach) to evaluate the risk of all-cause death associated with traditional cardiovascular risk factors, symptoms of heart failure, medication use, left ventricular ejection fraction, left ventricular mass, angiographic severity of CAD and extent of infarct size determined by CMR.

Results

Ninety-one patients had evidence of myocardial infarction by CMR. Mean follow-up was 4.8±1.6 years after CMR, during which time 30 patients died. The significant multivariable predictors of all-cause mortality were extent of myocardial infarction by CMR, extent of left ventricular systolic dysfunction, symptoms of heart failure, and diabetes mellitus (P<.05). The presence of infarct greater than or equal to 24% of left ventricular mass and left ventricular ejection fraction less than or equal to 30% were the most optimal cut-off points for the prediction of death with bivariate adjusted hazard ratios of 2.11 (95% confidence interval 1.02-4.38) and 4.06 (95% confidence interval 1.73-9.54), respectively.

Conclusions

The extent of myocardial infarction determined by CMR is an independent predictor of death in patients with CAD.  相似文献   

17.
18.
As the amygdala is involved in various aspects of emotional processing, its characterization using neuroimaging modalities, such as functional magnetic resonance imaging (fMRI), is of great interest. However, in fMRI, the amygdala region suffers from susceptibility artifacts that are composed of signal dropouts and image distortions. Various technically demanding approaches to reduce these artifacts have been proposed, and most require alterations beyond a mere change of the acquisition parameters and cannot be easily implemented by the user without changing the MR sequence code. In the present study, we therefore evaluated the impact of simple alterations of the acquisition parameters of a standard gradient-echo echo-planar imaging technique at 3 T composed of echo times (TEs) of 27 and 36 ms as well as section thicknesses of 2 and 4 mm while retaining a section orientation parallel to the intercommissural plane and an in-plane resolution of 2x2 mm(2). In contrast to previous studies, we based our evaluation on the resulting activation maps using an emotional stimulation paradigm rather than on MR raw image quality only. Furthermore, we tested the effects of spatial smoothing of the functional raw data in the course of postprocessing using spatial filters of 4 and 8 mm. Regarding MR raw image quality, a TE of 27 ms and 2-mm sections resulted in the least susceptibility artifacts in the anteromedial aspect of the temporal lobe. The emotional stimulation paradigm resulted in robust bilateral amygdala activation for the approaches with 2-mm sections only -- but with larger activation volumes for a TE of 36 ms as compared with that of 27 ms. Moderate smoothing with a 4-mm spatial filter represented a good compromise between increased sensitivity and preserved specificity. In summary, we showed that rather than applying advanced modifications of the MR sequence, a simple increase in spatial resolution (i.e., the reduction of section thickness) is sufficient to improve the detectability of amygdala activation.  相似文献   

19.
The objective of this study to examine the clinical impact of magnetic resonance imaging in long-term follow-up of patients (pts) with chronic disease of the thoracic aorta such as coarctation of the aorta, chronic aortic dissection and true aortic aneurysm. A total of 322 magnetic resonance examinations obtained in 82 pts with chronic disease of the thoracic aorta (31 pts with coarctation of the aorta (CoA), 29 pts with chronic aortic dissection and 22 pts with true aneurysm) over a period of 0.25 to 13.5 (mean +/- SD: 6.5 +/- 3.4) years were retrospectively reviewed. Diameters of the thoracic aorta were measured at predefined levels and morphological and functional parameters of special interest were analysed in each patient group. Pts were classified as having constant or progressive disease and clinical end-points were defined as (re-)operation or death. 43 pts (52%) (CoA 15 pts, chronic dissection 16 pts, true aneurysm 12 pts) had constant findings. None of them underwent (re-)operation and seven patients (16%) died, three of them from their aortic disease more than five years later after their last magnetic resonance examination, one from an arrhythmogenic event, and in the remaining 3 pts the cause of death could not be definitely established. 39 pts (48%) (CoA 16 pts, chronic dissection 13 pts, true aneurysm 10 pts) had progressive disease as demonstrated by repetitive magnetic resonance imaging. Of these 39 pts 24 pts underwent (re-)operation, in 15 pts operation was postponed. Four pts died from their aortic disease. Repetitive magnetic resonance imaging is a clinically feasible technique for long-term follow-up of pts with chronic disease of the thoracic aorta because it can detect progressive disease in a large subset of pts requiring elective surgery. The results of magnetic resonance imaging provided the rationale for either (re-)operation or conservative management, thus guiding patient management.  相似文献   

20.
Increasing scientific interest in the zebrafish as a model organism across a range of biomedical and biological research areas raises the need for the development of in vivo imaging tools appropriate to this subject. Development of the embryonic and early stage forms of the subject can currently be assessed using optical based techniques due to the transparent nature of the species at these early stages. However this is not an option during the juvenile and adult stages when the subjects become opaque. Magnetic resonance imaging (MRI) techniques would allow for the longitudinal and non-invasive assessment of development and health in these later life stages. However, the small size of the zebrafish and its aquatic environment represent considerable challenges for the technique. We have developed a suitable flow cell system that incorporates a dedicated MRI imaging coil to solve these challenges. The system maintains and monitors a zebrafish during a scan and allows for it to be fully recovered. The imaging properties of this system compare well with those of other preclinical MRI coils used in rodent models. This enables the rapid acquisition of MRI data which are comparable in terms of quality and acquisition time. This would allow the many unique opportunities of the zebrafish as a model organism to be combined with the benefits of non-invasive MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号