首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Opposition controlled fully developed turbulent flow along a thin cylinder is analyzed by means of direct numerical simulations. The influence of cylinder curvature on the skin-friction drag reduction effect by the classical opposition control (i.e., the radial velocity control) is investigated. The curvature of the cylinder affects the uncontrolled flow statistics; for instance, skin-friction coefficient increases while Reynolds shear stress (RSS) and turbulent intensity decrease. However, the control effect in the case of a small curvature is similar to that in channel flow. When the curvature is large, the maximum drag reduction rate decreased. However, the optimal location of the detection plane is the same as that in a flat plate. Further, the drag reduction effect is achieved even on a high detection plane where the drag increases in the flat plate. Although a difference in the drag reduction effect can be observed with a change in the curvature, its mechanism considered in this analysis based on the transport of the Reynolds stress is similar to that of the flat plate.  相似文献   

3.
Understanding how to decrease the friction drag exerted by a fluid on a solid surface is becoming increasingly important to address key societal challenges, such as decreasing the carbon footprint of transport. Well-established techniques are not yet available for friction drag reduction. Direct numerical simulation results obtained by Józsa et al. (2019) previously indicated that a passive compliant wall can decrease friction drag by sustaining the drag reduction mechanism of an active control strategy. The proposed compliant wall is driven by wall shear stress fluctuations and responds with streamwise wall velocity fluctuations. The present study aims to clarify the underlying physical mechanism enabling the drag reduction of these active and passive control techniques. Analysis of turbulence statistics and flow fields reveals that both compliant wall and active control amplify streamwise velocity streaks in the viscous sublayer. By doing so, these control methods counteract dominant spanwise vorticity fluctuations in the near-wall region. The lowered vorticity fluctuations lead to an overall weakening of vortical structures which then mitigates momentum transfer and results in lower friction drag. These results might underpin the further development and practical implementation of these control strategies.  相似文献   

4.
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.  相似文献   

5.
Flow past multi-element airfoil is studied via two-dimensional numerical simulations. The incompressible Reynolds averaged Navier–Stokes equations, in primitive variables, are solved using a stabilized finite element formulation. The Spalart–Allmaras and Baldwin–Lomax models are employed for turbulence closure. The implementation of the Spalart–Allmaras model is verified by computing flow over a flat plate with a specified trip location. Good agreement is seen between the results obtained with the two models for flow past a NACA 0012 airfoil at 5° angle of attack. Results for the multi-element airfoil, with the two turbulence models, are compared with experiments for various angles of attack. In general, the pressure distribution, from both the models matches quite well with the experimental results. However, at larger angles of attack, the computational results overpredict the suction peak on the slat. The velocity profiles from the Baldwin–Lomax model are, in general, more diffused compared to those from the Spalart–Allmaras model. The agreement between the computed and experimental results is not too good in the flap region for large angles of attack. Both the models are unable to predict the stall; the flow remains attached even for relatively large angles of attack. Consequently, the lift coefficient is over predicted at large α by the computations. Overall, compared to the Baldwin–Lomax model, the predictions from the Spalart–Allmaras model are closer to experimental measurements.  相似文献   

6.
Prediction of drag reduction effect caused by pulsating pipe flows is examined using machine learning. First, a large set of flow field data is obtained experimentally by measuring turbulent pipe flows with various pulsation patterns. Consequently, more than 7000 waveforms are applied, obtaining a maximum drag reduction rate and maximum energy saving rate of 38.6% and 31.4%, respectively. The results indicate that the pulsating flow effect can be characterized by the pulsation period and pressure gradient during acceleration and deceleration. Subsequently, two machine learning models are tested to predict the drag reduction rate. The results confirm that the machine learning model developed for predicting the time variation of the flow velocity and differential pressure with respect to the pump voltage can accurately predict the nonlinearity of pressure gradients. Therefore, using this model, the drag reduction effect can be estimated with high accuracy.  相似文献   

7.
Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction.  相似文献   

8.
The effects of leading-edge blowing-suction on the vortex flow past an airfoil at high incidence are investigated numerically by solving the Navier-Stokes equations. The results indicate that the frequency of the flowfield excited by the periodic blowing-suction locks into the forcing frequency, which is half of the dominant frequency for the flow past a fixed airfoil without injection. In that case, a well-developed primary leading-edge vortex occupies the upper surface of the airfoil and the largest lift augmentation is obtained. The project supported by the National Defence Research Fund of China  相似文献   

9.
The transfer of energy in drag reducing viscoelastic flows is analyzed through a sequence of energetic budgets that include the mean and turbulent kinetic energy, and the mean polymeric energy and mean elastic potential energy. Within the context of single-point statistics, this provides a complete picture of the energy exchange between the mean, turbulent and polymeric fields. The analysis utilizes direct simulation data of a fully developed channel flow at a moderately high friction Reynolds number of 1000 and at medium (30%) and high (58%) drag reduction levels using a FENE-P polymeric model.Results show that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer, and that the magnitude of this transfer does not change between the low and high drag reduction flows. This one-way transfer, with an amplitude independent of the drag reduction regime, comes in contradiction with the purely elastic coupling which is implicit within the elastic theory of the polymer drag reduction phenomenon by Tabor and De Gennes (Europhys. Lett. 2, pp. 519–522, 1986).  相似文献   

10.
11.
12.
Active control of flow separation over an airfoil using synthetic jets   总被引:1,自引:0,他引:1  
We perform large-eddy simulation of turbulent flow separation over an airfoil and evaluate the effectiveness of synthetic jets as a separation control technique. The flow configuration consists of flow over an NACA 0015 airfoil at Reynolds number of 896,000 based on the airfoil chord length and freestream velocity. A small slot across the entire span connected to a cavity inside the airfoil is employed to produce oscillatory synthetic jets. Detailed flow structures inside the synthetic-jet actuator and the synthetic-jet/cross-flow interaction are simulated using an unstructured-grid finite-volume large-eddy simulation solver. Simulation results are compared with the 2005 experimental data of Gilarranz et al., and qualitative and quantitative agreements are obtained for both uncontrolled and controlled cases. As in the experiment, the present large-eddy simulation confirms that synthetic-jet actuation effectively delays the onset of flow separation and causes a significant increase in the lift coefficient. Modification of the blade boundary layer due to oscillatory blowing and suction and its role in separation control is discussed.  相似文献   

13.
We performed laboratory experiments on bubbly channel flows using silicone oil, which has a low surface tension and clean interface to bubbles, as a test fluid to evaluate the wall shear stress modification for different regimes of bubble migration status. The channel Reynolds numbers of the flow ranged from 1000 to 5000, covering laminar, transition and turbulent flow regimes. The bubble deformation and swarms were classified as packing, film, foam, dispersed, and stretched states based on visualization of bubbles as a bulk void fraction changed. In the dispersed and film states, the wall shear stress reduced by 9% from that in the single-phase condition; by contrast, the wall shear stress increased in the stretched, packing, and foam states. We carried out statistical analysis of the time-series of the wall shear stress in the transition and turbulent-flow regimes. Variations of the PDF of the shear stress and the higher order moments in the statistic indicated that the injection of bubbles generated pseudo-turbulence in the transition regime and suppressed drag-inducing events in the turbulent regime. Bubble images and measurements of shear stress revealed a correlated wave with a time lag, for which we discuss associated to the bubble dynamics and effective viscosity of the bubble mixture in wall proximity.  相似文献   

14.
We present here both one- and two-dimensional models for turbulent flow through heterogeneous unbounded fluid saturated porous media using non-linear Forchheimer extended Darcy (DF) equation in the presence of gravitational field. The fluid is initially at rest and sets in motion due to a uniform horizontal density gradient. It is shown that a purely horizontal motion develops satisfying non-linear DF equation. Analytical solutions of this non-linear Initial Value Problem are obtained and limiting solutions valid for the Darcy regime in the case of laminar flow are derived. A measure of the stability of the flow is discussed briefly using Richardson number. The comparison between the nature of the solutions satisfying the non-linear and linear initial value problems are made. We found that even in the case of turbulent flow the vertical density gradient varies continuously both with space z and time t but the horizontal density gradient remains unchanged. The existence and uniqueness theorem of the Initial Value Problem is proved. The stability of these solutions are discussed and it is shown that the solutions are qualitatively and quantitatively different for and in the upper and lower half of the region. In particular, we have shown that the solution which is stable for infinitesimal perturbations is also stable for arbitrary perturbations both in time and space.In the case of two-dimensional motion, a piecewise initial density gradient with continuous distribution of density, stream function formulation is used and the solutions are obtained using time-series analysis. In this case solution shows crowding of the density profiles in the lower-half of the channel reflecting an increase in density gradient and incipient of frontogenesis there, because of the increase in circulation of the flow due to piecewise initial density gradient.  相似文献   

15.
Large-eddy simulation (LES) was used to study the influence and the resulting flow mechanisms of active flow control applied to a two-dimensional vehicle geometry. The LES results were validated against existing Particle Image Velocimetry (PIV) and force measurement data. This was followed by an exploration of the influence of flow actuation on the near-wake flow and resulting aerodynamic forces. Not only was good agreement found with the previous experimental study, but new knowledge was gained in the form of a complex interaction of the actuation with the coherent flow structures. The resulting time-averaged flow shows a strong influence of the extension of the actuation slots and the lateral solid walls on the near-wake flow structures and thereby on the resulting drag.  相似文献   

16.
Direct numerical simulations (DNS) of flow over triangular and rectangular riblets in a wide range of size and Reynolds number have been carried out. The flow within the grooves is directly resolved by exploiting the immersed-boundary method. It is found that the drag reduction property is primarily associated with the capability of inhibiting vertical velocity fluctuations at the plane of the crests, as in liquid-infused surfaces (LIS) devices. This is mimicked in DNS through artificial suppression of the vertical velocity component, which yields large drag decrease, proportionate to the riblets size. A parametrization of the drag reduction effect in terms of the vertical velocity variance is found to be quite successful in accounting for variation of the controlling parameters. A Moody-like friction diagram is thus introduced which incorporates the effect of slip velocity and a single, geometry-dependent parameter. Reduced drag-reduction efficiency of LIS-like riblets is found as compared to cases with artificially imposed slip velocity. Last, we find that simple wall models of riblets and LIS-like devices are unlikely to provide accurate prediction of the flow phenomenon, and direct resolution of flow within the grooves in necessary.  相似文献   

17.
A number of different polymer fluids were ejected on the centerline of a water pipe-flow facility. Two distinct flow regions were identified: Reynolds numbers above 25000, where centerline injection acted as a rather efficient mixing device for water-soluble polymer — and no drag-reduction resulted from non water-soluble materials; and Reynolds numbers from 10000 to 25000, where strong evidence exists that under certain conditions, a viscoelastic fluid thread can interact with turbulence eddies and reduce the overall flow friction in the pipe.On Sabbatical leave from San Diego State University.  相似文献   

18.
Microbubble and air film methods are believed to be applicable to skin friction reduction in ships. Small bubbles are dispersed into the turbulent boundary layer in the former case, and wide air layers cover the wall surface in the latter case. Previous studies did not specifically address the intermediate case between the microbubble and air film conditions. This study is concerned with the possibility and mechanism of drag reduction using relatively large air bubbles compared to the boundary layer thickness in a horizontal turbulent channel flow. The relationship between local skin friction and the bubble’s interfacial structure is investigated by synchronizing the measurement of wall-shear stress with the image acquisition of bubbles. The bubble sizes range from 2 to 90 mm approximately. As a result, a negative correlation between the local skin friction and the local void fraction is confirmed by the time-resolved measurement. A new observation is the fact that the local skin friction decreases drastically in the rear part of individual large bubbles, and rapidly increases after the bubble’s rear interface passes. This characteristic underlies the bubble-size dependency of the average skin friction in the intermediate bubble size condition.  相似文献   

19.
A direct numerical simulation dataset of a fully developed turbulent Couette-Poiseuille flow is analyzed to investigate the spatial organization of streamwise velocity-fluctuating u-structures on large and very large scales. Instantaneous and statistical flow fields show that negative-u structures with a small scale on a stationary bottom wall grow throughout the centerline due to the continuous positive mean shear, and they penetrate to the opposite moving wall. The development of an initial vortical structure related to negative-u structures on the bottom wall into a large-scale hairpin vortex packet with new hairpin vortices, which are created upstream and close to the wall, is consistent with the auto-generation process in a Poiseuille flow (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). Although the initial vortical structure associated with positive-u structures on the top wall also grows toward the bottom wall, the spatial development of the structure is less coherent with weak strength due to the reduced mean shear near the top wall, resulting in less turbulent energy on the top wall. The continuous growth of the structures from a wall to the opposite wall explains the enhanced wall-normal transport of the streamwise turbulent kinetic energy near the centerline. Finally, an inspection of the time-evolving instantaneous fields and conditional averaged flow fields for the streamwise growth of a very long structure near the centerline exhibits that a streamwise concatenation of adjacent large-scale u-structures creates a very-large-scale structure near the channel centerline.  相似文献   

20.
The flow field of a channel rotating about the streamwise axis is analyzed experimentally and numerically. The current investigations were carried out at a bulk velocity based Reynolds number of Rem = 2850 and a friction velocity based Reynolds number of Reτ = 180, respectively. Particle-image velocimetry (PIV) measurements are compared with large-eddy simulation data to show earlier direct numerical simulation findings to generate too large a reverse flow region in the center region of the spanwise flow. The development of the mean spanwise velocity distribution and the influence of the rotation on the turbulent properties, i.e., the Reynolds stresses and the two-point correlations of the flow, are confirmed in both investigations. The rotation primarily influences those components of the Reynolds shear stresses, which contain the spanwise velocity component. The size of the correlation areas and thus the length scales of the flow generally grow in all three coordinate directions leading to longer structures. Furthermore, experimental results of the same channel flow at a significantly lower bulk Reynolds number of Rem, l = 665, i.e., a laminar flow in a non-rotating channel, are introduced. The experiments show the low Reynolds number flow to become turbulent under rotation and to develop the same characteristics as the high Reynolds number flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号