首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fraction of surface atoms and the dangling bonds on the surface affect the thermodynamical properties of the nanostructured solids. A bond theory model is extended to study the size dependent thermodynamical properties at nanoscale. The theory is applied to analysis the size and shape dependence of cohesive energy, thermal expansion coefficient and specific heat of Ag, Au, Cu and Se nanosolids. The relaxation factor is incorporated at low dimension of nanosolids, which is expressed as the ratio of dangling bonds and the total bonds of atoms. It is predicted that the cohesive energy decreases with decrease in particle size. On the same ground, the model is proposed to analyze the thermal expansion coefficient and specific heat of the nanomaterials. It is reported that the thermal expansion coefficient and specific heat increase as particle size decreases. The predictions agree well with available experimental or simulation results.  相似文献   

2.
In this work we study the structural stability and electronic properties of the Beryllium sulfide nanowires (NWs) in zinc-blende (ZB) and wurtzite (WZ) phases (with triangle and hexagonal cross sections), using first principle calculations within the plane-wave pseudopotential method. A phenomenological model is used to explain the role of dangling bonds in the stability of the NWs. In contrast to the bulk phase, the ZB-NWs with diameters less than 133.3 Å are found to be less favorable over the WZ-NWs, in which the surface dangling bonds (DBs) on the NW facets play an important role to stabilize the NWs. Furthermore, both ZB- and WZ-NWs are predicted to be semiconductor and the values of the band gaps are dependent on the surface DBs as well as the size and shape of the NWs. Finally, we obtain atom projected density of states (PDOSs) by calculating the localized density of states on the surface atoms, as well as on the core and edge atoms.  相似文献   

3.
The optical spectra of quantum dots (QDs) of CdS and ZnSe grown in borosilicate glass by the sol-gel method are obtained and analyzed. It is found that at concentrations of the two semiconductors x<0.06% the emission spectra are due to annihilation of free (internal) excitons in quantum states. The mean size of the quantum dots for a given concentration of ZnSe and CdS is calculated and found to be in good agreement with the X-ray data, and the exciton binding energy is calculated with allowance for the dielectric mismatch between the semiconductor and matrix. It is proposed that this mismatch may be the cause giving rise to the exciton percolation level that is observed in QD arrays for both systems at x>0.06%. The emission from the surface level of CdS QDs in the region ~2.7 eV, formed by the outer atoms with dangling bonds, is observed for the first time, as is the emission band from surface localized states. The relation between the position of the maximum of this band and the energy of the 1S state of the free exciton is established. It is shown that the properties of surface localized states are largely similar to the analogous properties of localized states of 3D (amorphous semiconductors, substitutional solid solutions of substitution) and 2D (quantum wells and superlattices) structures.  相似文献   

4.
Under the generalized gradient approximation (GGA), the stabilities and electronic properties of semiconductor AlN nanostructures have been investigated by using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. The single-walled faceted AlNNTs present an obvious structural modification. The larger the diameter, the more stable the nanowire, and the wires without internal surfaces are more stable than the multiwalled tubes or the SWNT. Therefore, the large-size nanowires are easier to be synthesized than the corresponding multiwalled tubes or single-walled nanotube in experiment. The dangling bonds of surface atoms cause the “localized edge-induced states”. These two nanostructures C and F are still wide band gap semiconductors accompanied by a few surface states located in the band gap of bulk AlN and thus extremely suitable for application in flexible pulse wave sensors, nanomechanical resonators and light-emitting diodes.  相似文献   

5.
The effect of the dangling bond on the electronic and magnetic properties of BN nanoribbon with zigzag edge (ZBNNR) and armchair edge (ABNNR) have been studied using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. Though ZBNNR or ABNNR with H atom terminated at both edges is nonmagnetic semiconductor, the dangling bond induces magnetism for the ZBNNR with bare N edge, bare B edge, bare N and B edges, the ABNNR with bare N edge and bare B edge. However, the ABNNR with bare N and B edges is still nonmagnetic semiconductor due to the strong coupling of the dangling bonds of dimeric N and B atoms at the same edge. The magnetic moment of ZBNNR with bare N(B) edge is nearly half the magnetic moment of ABNNR with bare N(B) edge. Such a half relationship is also existed in the number of the dangling bond states appeared around the Fermi level in the band structures. Furthermore, the dangling bond states also cause both ZBNNR and ABNNR with bare N edge a transition from semiconducting to half-metallic and thus a completely (100%) spin-polarization, while cause both ZBNNR and ABNNR with bare B edge as well as ABNNR with bare N and B edges only a decrease in their band gap.  相似文献   

6.
《Physics letters. A》2019,383(35):125992
Two dimensional monolayer materials play important roles in new generation of electronic and optical devices in nano scale. In this paper, by using first principles calculations, the existence of 2D Li2X (X=Se, Te) monolayer materials are theoretically predicted. Through cohesive energy calculation and phonon dispersion simulation, it is proved that the proposed 2D Li2Se and Li2Te monolayer materials are energetically and dynamically stable suggests their potential experimental realization. Our study shows that these newly predicted compounds are direct semiconductors and have strain tunable wide band gaps. As direct semiconductors, these new monolayers may have many applications in electronics and optoelectronics devices.  相似文献   

7.
本文基于密度泛函理论的第一性原理方法了计算了Rb、O和H吸附石墨烯纳米带的差分电荷密度、能带结构、分波态密度和介电函数,调制了石墨烯纳米带的电子性质和光学性质,给出了不同杂质影响材料光学特性的规律.结果表明本征石墨烯纳米带为n型直接带隙半导体且带隙值为0.639 eV;Rb原子吸附石墨烯纳米带之后变为n型简并直接带隙半导体,带隙值为0.494eV;Rb和O吸附石墨烯纳米带变为p型简并直接带隙半导体,带隙值增加为0.996eV;增加H吸附石墨烯纳米带后,半导体类型变为n型直接带隙半导体,且带隙变为0.299eV,带隙值相对减小,更有利于半导体发光器件制备.吸附Rb、O和H原子后,石墨烯纳米带中电荷密度发生转移,导致C、Rb、O和H之间成键作用显著.吸附Rb之后,在费米能级附近由C-2p、Rb-5s贡献;增加O原子吸附之后,O-2p在费米能级附近贡献非常活跃,杂化效应使费米能级分裂出一条能带;再增加H原子吸附之后,Rb-4p贡献发生蓝移,O-2p在费米能级附近贡献非常强,费米能级分裂出两条能带.Rb、O和H的吸附后,明显调制了石墨烯纳米带的光学性质.  相似文献   

8.
《Physics letters. A》2014,378(28-29):1956-1960
Using density functional theory calculation, we show that oxygen (O) exhibits an interesting effect in CuInSe2 and CuGaSe2. The Se atoms with dangling bonds in a Se-rich Σ3 (114) grain boundary (GB) create deep gap states due to strong interaction between Se atoms. However, when such a Se atom is substituted by an O atom, the deep gap states can be shifted into valence band, making the site no longer a harmful non-radiative recombination center. We find that O atoms prefer energetically to substitute these Se atoms and induce significant lattice relaxation due to their smaller atomic size and stronger electronegativity, which effectively reduces the anion–anion interaction. Consequently, the deep gap states are shifted to lower energy regions close or even below the top of the valence band.  相似文献   

9.
张勇  施毅敏  包优赈  喻霞  谢忠祥  宁锋 《物理学报》2017,66(19):197302-197302
纳米线表面存在大量的表面态,它们能够引起电子分布在纳米线表面,使得纳米线的电学性质对表面条件变得更加敏感,严重地制约器件的性能.表面钝化能够有效地移除纳米线的表面态,进而能够有效地优化器件的性能.采用基于密度泛函理论的第一性原理计算方法研究了表面钝化效应对GaAs纳米线电子结构性质的影响.考虑了不同的钝化材料,包括氢元素、氟元素、氯元素和溴元素.研究结果表明:具有小尺寸的GaAs裸纳米线的能带结构呈间接带隙特征,表面经过完全钝化后,转变为直接带隙特征;GaAs纳米线表面经过氢元素不同位置和不同比例钝化后,展示出不同的电学性质;表面钝化的物理机理是钝化原子与纳米线表面原子通过电荷补偿移除纳米线表面的电子态;与氢元素钝化相比,GaAs纳米线表面经过氟元素、氯元素和溴元素钝化后,带隙宽度较小,原因是氟元素、氯元素和溴元素在钝化过程中具有较小的电荷补偿能力,不能完全移除表面态.  相似文献   

10.
CdS半导体超微粒样品光谱性质的研究   总被引:3,自引:0,他引:3  
纳米尺度的半导体超微粒在线性和非线性光学方面表现出来的奇特性质使其成为研究和开发新的功能材料的热点。成键为 S、P轨道的 - 族金属硫化物半导体 ,电子结构和晶体结构均较为简单 ,结晶性能好 -界面无序结构少 ,在纳米尺度上其结构仍与体相材料近似 ,因此 ,成为研究量子尺寸效应的理想材料。本文对采用化学微乳液法合成的 Cd S半导体超微粒的光谱性质进行了研究 ,实验结果显示 ,Cd S超微粒样品的吸收光谱的带边与体相相比发生了蓝移 ;从吸收光谱中可以看到 ,Cd S超微粒样品的吸收边随粒径减少而向短波方向移动。拉曼光谱的电子—— L O声子耦合在粒子尺寸 2 .4- 2 .9nm范围内与粒子尺寸无关  相似文献   

11.
Nanoscaled or porous silicon (p-Si) with and without surface passivation exhibits unusually tunable properties that its parent bulk does never show. Such property tunability amplifies the applicability of Si in the concurrent and upcoming technologies. However, consistent understanding of the fundamental nature of nanoscaled Si remains a high challenge. This article aims to address the recent progress in this regard with focus on reconciling the tunable dielectric, electronic, phononic, and photonic properties of p-Si in terms of skin dominance. We show that the skin-depth bond contraction, local quantum entrapment, and electron localization is responsible for the size-induced property tunability. The shorter and stronger bonds between undercoordinated skin atoms result in the local densification and quantum entrapment of the binding energy and the bonding electrons, which in turn polarizes the dangling bond electrons. Such local entrapment modifies the Hamiltonian and associated properties such as the band gap, core level shift, Stokes shift (electron–phonon interaction), phonon and dielectric relaxation. Therefore, given the known trend of one property change, one is expected to be able to predict the variation of the rest based on the notations of the bond order–length–strength correlation and local bond average approach (BOLS-LBA). Furthermore, skin bond reformation due to Al, Cu, and Ti metallization and O and F passivation adds another freedom to enhance or attenuate the size effect. The developed formulations, spectral analytical methods, and importantly, the established database and knowledge could be of use in engineering p-Si and beyond for desired functions.  相似文献   

12.
Using density functional theory calculation, we show that oxygen (O) exhibits an interesting effect in CdTe. The Te atoms with dangling bonds in a Te-rich rich Σ3 (112) grain boundary (GB) create deep gap states due to strong interaction between Te atoms. However, when such a Te atom is substituted by an O atom, the deep gap states can be shifted toward the valence band, making the site no longer a harmful non-radiative recombination center. We find that O atoms prefer energetically substituting these Te atoms and induce significant lattice relaxation due to their smaller atomic size and stronger electronegativity, which effectively reduces the anion–anion interaction. Consequently, the deep gap states are shifted to lower energy regions close to or even below the top of the valence band.  相似文献   

13.
In this paper, by using of the first principles calculations in the framework of the density functional theory, we systematically investigated the structure, stability, electronic and optical properties of a novel two-dimensional pentagonal monolayer semiconductors namely penta-SiC5 monolayer. Comparing elemental silicon, diamond, and previously reported 2D carbon allotropes, our calculation shows that the predicted penta-SiC5 monolayer has a metastable nature. The calculated results indicate that the predicted monolayer is an indirect semiconductor with a wide band gap of about 2.82 eV by using Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional level of theory which can be effectively tuned by external biaxial strains. The obtained exceptional electronic properties suggest penta-SiC5 monolayer as promising candidates for application in new electronic devices in nano scale.  相似文献   

14.
纳米Si/C/N复相粉体的微波介电特性   总被引:11,自引:0,他引:11       下载免费PDF全文
赵东林  周万城  万伟 《物理学报》2001,50(12):2471-2476
研究了纳米Si/C/N复相粉体在8.2—18GHz的微波介电特性,采用双反应室激光气相合成纳米粉体装置,以六甲基二硅胺烷((Me3Si)2NH)(Me∶CH3)为原料,用激光诱导气相反应法合成纳米Si/C/N复相粉体,复相粉体的粒径为20—30nm.纳米Si/C/N复相粉体与石蜡复合体的介电常量的实部(ε′)和虚部(ε″)以及介电损耗角正切(tan δ=ε″/ε′)随纳米粉体含量的增加而增大,ε′和ε″与纳米粉体体积分数(v)之间符合二次函 关键词: 纳米Si/C/N复相粉体 微波介电常量 微观结构  相似文献   

15.
王雪梅  刘红 《物理学报》2011,60(4):47102-047102
运用π电子紧束缚模型,具体研究了锯齿型石墨烯纳米带(ZGNRs)的边界结构对能带,特别是费米面附近的导带和价带电子的影响.计算了七种不同边界结构的ZGNRs的能带色散关系及费米面附近价带电子在原胞中各原子上的分布情况.计算结果表明:两边界都无悬挂原子的NN-ZGNRs,只有一边界有悬挂原子的DN-ZGNRs,两边界都有五边形环的SPP-ZGNRs和ASPP-ZGNRs为金属性.两边界都有悬挂原子的DD-ZGNRs,一边界为五边形环另一边界无悬挂原子的PN-ZGNRs和一边界为五边形环另一边界有悬挂原子的P 关键词: 锯齿型石墨烯纳米带 紧束缚模型 电子密度分布 缺陷结构  相似文献   

16.
Besides graphite, diamond, graphene, carbon nanotubes, and fullerenes, there is another allotrope of carbon, carbyne,existing in the form of a one-dimensional chain of carbon atoms. It has been theoretically predicted that carbyne would be stronger, stiffer, and more exotic than other materials that have been synthesized before. In this article, two kinds of carbyne, i.e., cumulene and polyyne are investigated by the first principles, where the mechanical properties, electronic structure, optical and phonon properties of the carbynes are calculated. The results on the crystal binding energy and the formation energy show that though both are difficult to be synthesized from diamond or graphite, polyyne is more stable and harder than cummulene. The tensile stiffness, bond stiffness, and Young's modulus of cumulene are 94.669 eV/?A,90.334 GPa, and 60.62 GPa, respectively, while the corresponding values of polyyne are 94.939 eV/?A, 101.42 GPa, and60.06 GPa. The supercell calculation shows that carbyne is most stable at N = 5, where N is the supercell number, which indicates that the carbon chain with 10 atoms is most stable. The calculation on the electronic band structure shows that cumulene is a conductor and polyyne is a semiconductor with a band gap of 0.37 eV. The dielectric function of carbynes varies along different directions, consistent with the one-dimensional nature of the carbon chains. In the phonon dispersion of cumulene, there are imaginary frequencies with the lowest value down to-3.817 THz, which indicates that cumulene could be unstable at room temperature and normal pressure.  相似文献   

17.
We have computed the electronic band structure for a model of the 2 × 1-reconstructed (111) surface of Si, based on 2 two-dimensional net of dangling bonds. A pairing of surface atoms is assumed, involving a displacement and a tilting of the dangling bonds towards each other. The energy gap that separates the two bands of surface states obtained increases with the degree of reconstruction, which is taken as a parameter. Experimental data, particularly surface optical absorption, find a satisfactory explanation in terms of this calculation, which indicates in Si (111) 2 × 1 a shift of the surface atoms by about 8% of their ideal distance.  相似文献   

18.
基于密度泛函理论, 本文研究了氢钝化锯齿形边缘三角形石墨烯纳米片的电子结构和磁学性质, 这种石墨烯纳米结构的基态表现出强烈的磁性边缘态和量子尺寸效应。 我们应用多种交换关联泛函, 对体系的自旋密度和电子结构进行了第一性原理计算和理论分析, 结果表明三角形石墨烯纳米片的总磁矩和自旋随尺寸线性变化,平均磁矩随着尺寸变大而增加, 并逐渐趋于一个定值。 与此同时, 体系的能隙随着尺寸增加而减小, 其中自旋不变能隙的调控对光学响应和光子激发有着重要意义。 计算得到的单电子能谱表明, 费米能级的简并度与体系尺寸成正比。 应用多种交换关联泛函的计算结果表明, 三角形石墨烯纳米片具有可调控的自旋和能隙, 为其在纳米级光电器件和磁性半导体的应用方面提供了理论依据.  相似文献   

19.
Equilibrium shape and surface energies are among the most basic properties of finite crystals. Yet, an effective approach for accurately calculating individual energy for polar semiconductor surfaces is still lacking, and there is not a general rule regarding surface energies of different orientations. Here, we suggest a wedge-shaped geometry for calculating individual surface energies by direct, first-principles methods. Applications to prototypical semiconductors, Ge, GaAs, and ZnSe, establish a surprisingly simple common dangling bond rule relating surface energies to local chemical similarities.  相似文献   

20.
The exciton-longitudinal optical phonon interaction is theoretically investigated for the case of polar semiconductor cylindrical quantum dots embedded in semiconductor matrix. The theory is developed within the dielectric continuum model considering the Fröhlich interaction between electrons and confined bulk longitudinal optical phonons for a configurational interaction model of quantum dot. Representative longitudinal optical phonon mode for the exciton-phonon interaction is predicted for cylindrical InAs/GaAs quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号