首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multi-scale structures of turbulent wakes generated by three kinds of bluff body, i.e. circular cylinder, square cylinder and compound of cylinder and square (CS) cylinders, have been experimentally investigated in this paper. Firstly, the instantaneous velocity fields and vorticity were measured by the high-speed PIV technique in a circulating water channel. The instantaneous streamlines and corresponding normalized vorticity contours are obtained at a Reynolds number of 5600. Then one- and two-dimensional wavelet multi-resolution technique was used to analyze the instantaneous velocities and vorticity measured by the high-speed PIV. The turbulence structures were separated into a number of subsets based on their central frequencies, which are linked with the turbulence scales. The instantaneous vorticity and Reynolds shear stresses of various scales were examined and compared between the three generators. It is found that the large-scale turbulent structure makes the largest contribution to the vorticity and Reynolds shear stresses for the three wake generators and exhibits a strong dependence upon the initial conditions or the wake generators. The large-scale vorticity and the sizes of vortex in the circular and square cylinders are larger than those in the CS cylinder wake. The contributions to the Reynolds shear stresses from the large-scale turbulent structures account for 90-96% to the measured maximum Reynolds shear stresses for the three wakes. However, the small-scale structures make less contribution to the vorticity and Reynolds shear stresses.  相似文献   

2.
Structure of wake of a sharp-edged bluff body in a shallow channel flow   总被引:1,自引:0,他引:1  
The flow field downstream of a bluff body in a typical open channel flow was explored by two-dimensional particle image velocimetry. Measurements are obtained in horizontal planes at the near-bed, mid-depth and near-surface locations downstream of the body up to a streamwise distance of 10D, where D is the width of the body. The dimensionless streamwise defect velocity profile of the wake flow matches well with the data of a previous investigation and does not reflect any dependency on the distance from the bed. However, the nature of development of the recirculation region is found to be different at the three vertical locations. The time-averaged streamline pattern indicates the existence of a unique nodal pattern close to the bed. The variation of the half-width is also found to be affected by the presence of the bed and the free surface. The bed friction arrests the transverse growth of the shear layer, and the free-surface helps to redistribute the turbulent kinetic energy in the streamwise and transverse directions. Swirling strength analysis is carried out to compare the behavior and statistics of the vortex population in the vertical direction. The prevailing magnitude of the swirling strength is found to be different at the three vertical locations. Bed friction assists to dissipate vorticity rapidly, and therefore reduces the probability of appearance of strong vortices close to the bed.  相似文献   

3.
Local and global instabilities are investigated of wakes of general two-dimensional bluff bodies placed near and parallel to a plane boundary or ground. A spatio-temporal linear stability analysis is first applied to a four-parameter family of local wake profiles to investigate the fundamental local stability characteristics of the wake in ground effect. The analysis shows significant dependencies of the stability characteristics of the wake on the distance from the wake centreline to the ground (normalised by the wake width), and also on the velocity ratio of the near- and far-ground sides of the wake. The analysis is then compared with earlier experiments on a circular cylinder to examine, according to the transition scenario of the steep global modes, the streamwise variation of the local stability characteristics of the wake in ground effect. The comparison indicates that the near wake region of the cylinder changes from being absolutely unstable to being convectively unstable when the cylinder comes down into the near-ground range in which the von Kármán-type vortex shedding from the cylinder is suppressed, being qualitatively consistent with the transition scenario for general wake-type flows. A possible explanation is also given for the counter-intuitive relation between the thickness of the boundary layer on the ground and the critical gap distance for the cessation of the von Kármán-type vortex shedding in ground effect.  相似文献   

4.
This paper performs large eddy simulations (LES) to investigate coherent structures in the flows after the Sydney bluff-body burner, a circular bluff body with an orifice at its center. The simulations are validated by comparison to existing experimental data. The Q function method is used to visualize the instantaneous vortex structures. Three kinds of structures are found, a cylindrical shell structure in the outer shear layer, a ring structure and some hairpin-like structures in the inner shear layer. An eduction scheme is employed to investigate the coherent structures in this flow. Some large streaks constituted by counter-rotating vortices are found in the outer shear layer and some well-organized strong structures are found in the inner shear layer. Finally, the influences of coherent structures on scalar mixing are studied and it is shown that scalar in the recirculation region is transported outward by coherent structures.  相似文献   

5.
The motivation of this study is to investigate the turbulence–chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier–Stokes (RANS)/PDF method is used to simulate the turbulent non-reacting and reacting flows. The joint fluctuating velocity–frequency–composition PDF equation coupled with the Reynolds averaged density, momentum and energy equations are solved on unstructured meshes by the Lagrangian Monte Carlo (MC) method combined with the finite volume (FV) method. The simulation of the axisymmetric bluff body stabilized non-reacting flow fields is presented in this paper. The calculated length of the recirculation zone is in good agreement with the experimental data. Moreover, the significant change of the flow pattern with the increase of the jet-to-coflow momentum flux ratio is well predicted. In addition, comparisons are made between the joint PDF model and two different Reynolds stress models. The project supported by the National Natural Science Foundation of China (50506028), and Action Scheme for Invigorating Education Towards the twenty-first century.  相似文献   

6.
In this paper, a quasi-steady three degree-of-freedom (3-dof) flow-induced galloping instability model for bluff-bodies is proposed. The proposed model can be applied generally for the prediction of onset of galloping instability due to negative aerodynamic damping of any prismatic compact bluff body in a fluidic medium. The three degrees of freedom refer to the bluff body's two orthogonal displacements perpendicular to its length axis and the rotation about its length axis. The model incorporates inertial coupling between the three degrees of freedom and is capable of estimating the onset of galloping instability due changes in drag, lift and moment, assuming that the bluff body is subject to uniform flow and motion. The changes may be a function of wind angle of attack (α) perpendicular to bluff body's length axis, Reynolds number and a skew wind angle (?) in relation to the length axis of the bluff body. An analytical solution of the instability criterion is obtained by applying the Routh-Hurwitz criterion.  相似文献   

7.
Fluctuating skin friction is measured in two- and three-dimensional turbulent boundary layers using a MEMS sensor and a wall-wire as reference. Skewness, flatness and spectra of the turbulent skin friction are presented to demonstrate the potential and limitations of the MEMS sensor. The measured turbulence intensities of the order of 0.4 are in general agreement with a number of experimental and DNS studies. However, the fluctuating quantities measured with this MEMS sensor, operated at an over-heat ratio of 1.3, are shown to depend on the Reynolds number or mean skin friction. Therefore, such a high over-heat ratio, which was proven to dramatically increase the accuracy of mean skin friction measurements in a previous study by the authors, may not be appropriate for the measurement of fluctuating wall-shear with MEMS sensors, particularly at low mean shear values.  相似文献   

8.
9.
G. Riccardi  A. Iafrati  R. Piva 《Meccanica》1994,29(2):159-173
The 2D flow about a lentil-shaped body at high incidence in uniform stream is numerically simulated for high Reynolds numbers. The separation points are fixed on the body edges and the vorticity released through a Kutta-like condition is spatially discretized by point vortices. Their Lagrangianinviscid dynamics is described by using both aconformal mapping and aboundary elements method. The present results are in good agreement with previous calculations but still not satisfactory when compared with the experiments.The aim of the present work is to investigate the effect of different Kutta conditions and the effect of different amalgamation procedures in the far wake on global quantities such as theStrouhal number or the total shed circulation. Other remarkable effects induced either by the action of viscosity or by the rising of secondary 3D motion, may not be analyzed by the present simplified model.
Sommario Si studia il flusso attorno ad una lente ad elevata incidenza nelle ipotesi di elevato numero di Reynolds e flusso bidimensionale. I punti di separazione sono fissati sulle estremità della lente e la produzione di vorticità da questi è realizzata con opportune condizioni di Kutta. La dinamica dei vortici è descritta con un modello Lagrangiano non viscoso. I risultati, ottenuti sia con l'uso di una trasformazione conforme che con un metodo agli elementi di contorno, sono in ottimo accordo con i risultati di precedenti simulazioni numeriche, ma non sono ancora soddisfacenti se confrontati con gli esperimenti.Si analizza in termini di grandezze globali del flusso, quali il numero di Strouhal e la circolazione totale rilasciata, l'effetto di due diverse condizioni di Kutta e dell'uso di procedure di compattazione della scia lontana. Si conclude che l'uso di diverse condizioni di Kutta produce risultati pressoché identici mentre l'utilizzo di procedure di compattazione della scia può alterare in modo significativo il numero di Strouhal del flusso. Rimangono da analizzare altre possibili cause del disaccordo con le sperimentazioni quali la diffusione viscosa e la probabile presenza di moti tridimensionali.
  相似文献   

10.
开缝钝体尾迹的拟序结构   总被引:1,自引:0,他引:1  
弄清开缝钝体尾迹的拟序结构是认识其火焰稳定机理的基础。在雷诺数R e为470000条件下,采用RNGk-ε模型对通道内的开缝钝体尾迹进行数值模拟来分析大涡尺度的拟序结构。模拟结果显示,偏向一侧的中缝流将近尾分成主回流区和次回流区,主回流区的漩涡脱落激发扰动,引起近尾的绝对不稳定。并提出单涡突然置于两剪切层间的漩涡脱落机理来解释拟序结构不稳定特性。为了验证上述结论,在闭式风洞中采用激光粒子测速技术(P IV)对开缝钝体的尾迹进行了实验研究,其结果与数值分析较好地吻合。  相似文献   

11.
We have conducted direct numerical simulations of a turbulent boundary layer for the momentum-thickness-based Reynolds number Reθ = 180–4600. To extract the largest-scale vortices, we coarse-grain the fluctuating velocity fields by using a Gaussian filter with the filter width comparable to the boundary layer thickness. Most of the largest-scale vortices identified by isosurfaces of the second invariant of the coarse-grained velocity gradient tensor are similar to coherent vortices observed in low-Reynolds-number regions, that is, hairpin vortices or quasi-streamwise vortices inclined to the wall. We also develop a percolation analysis to investigate the threshold-dependence of the isosurfaces and objectively identify the largest-scale hairpin vortices in terms of the coarse-grained vorticity, which leads to the quantitative evidence that they never disappear even in fully developed turbulent regions. Hence, we conclude that hairpin vortices exist in the largest-scale structures irrespective of the Reynolds number.  相似文献   

12.
We compare the space-time correlations calculated from direct numerical simulation(DNS) and large-eddy simulation(LES) of turbulent channel flows.It is found from the comparisons that the LES with an eddy-viscosity subgrid scale(SGS) model over-predicts the space-time correlations than the DNS.The overpredictions are further quantified by the integral scales of directional correlations and convection velocities.A physical argument for the overprediction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions.This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows.It suggests that enstrophy is crucial to the LES prediction of spacetime correlations.The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.  相似文献   

13.
LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles   总被引:2,自引:0,他引:2  
Large-eddy simulation (LES) has been applied to calculate the turbulent flow over staggered wall-mounted cubes and staggered random arrays of obstacles with area density 25%, at Reynolds numbers between 5 × 103 and 5 106, based on the free stream velocity and the obstacle height. Re = 5 × 103 data were intensively validated against direct numerical simulation (DNS) results at the same Re and experimental data obtained in a boundary layer developing over an identical roughness and at a rather higher Re. The results collectively confirm that Reynolds number dependency is very weak, principally because the surface drag is predominantly form drag and the turbulence production process is at scales comparable to the roughness element sizes. LES is thus able to simulate turbulent flow over the urban-like obstacles at high Re with grids that would be far too coarse for adequate computation of corresponding smooth-wall flows. Comparison between LES and steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising that the latter are inadequate, especially within the canopy region.  相似文献   

14.
Large eddy simulation of planar shear flow past a square cylinder has been investigated. Dynamic Smagorinsky model has been used to model subgrid scale stress. The shear parameter, K, namely the nondimensional streamwise velocity gradient in the lateral direction, is 0.0, 0.1 and 0.2. Reynolds number based on the centerline velocity is fixed at Re=21400. The time and span‐averaged velocity components, pressure coefficient, Reynolds stresses for uniform are in good agreement with the literature. In shear flow the calculated flow structure and mean velocity components are shown to be markedly different from those of the uniform flow. With increasing shear parameter, the cylinder wake is dominated by clockwise vortices. Both the velocity components in shear flow are compared with respective components in uniform flow. Comparison of normal and shear stresses between shear and no shear case have also been presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
In this research, direct numerical simulation has been performed to study the turbulent wake behind a wall-mounted square cylinder with aspect ratio 4 and Reynolds number 12 000 (based on the free-stream velocity and obstacle side length) in a developing boundary layer. Owing to the relatively high Reynolds number and high aspect ratio of the cylinder tested, the wake is wide spread behind the cylinder and exhibits complex and energetic vortex motions. The lateral and tip vortex shedding patterns at different frequencies, coherent structures downstream of the obstacle, the production rate and distribution of turbulent kinetic energy, and the instantaneous pressure distribution in the wake region have been thoroughly investigated. In order to validate the numerical results, the first- and second-order flow statistics obtained from the simulations have been carefully compared against available wind-tunnel measurement data.  相似文献   

18.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over two-dimensional (2D) rod-roughened walls and three-dimensional (3D) cuboid-roughened walls are conducted to investigate the effects of the roughness height on the flow characteristics in the outer layer. The rod elements are periodically aligned along the downstream direction with a pitch of px/θin = 12, and the cuboid elements are periodically staggered with a pitch of px/θin = 12 and pz/θin = 3, where px and pz are correspondingly the streamwise and spanwise pitches of the roughness and θin is the momentum thickness at the inlet. The first surface roughness is placed 80θin downstream from the inlet, leading to a step change from a smooth to rough surface. The rod and cuboid roughness height (k) is varied in the range of 0.1 ≤ k/θin ≤ 1.8 (13 ≤ δ/k ≤ 285), respectively (δ is the boundary layer thickness), and the Reynolds number based on the momentum thickness (θ) is varied in the range of Reθ = 300 ~ 1400. For each case, the self-preservation form of the velocity-defect and the turbulent Reynolds stresses is achieved along the downstream direction. As the roughness height increases, the roughness function (ΔU+) extracted from the mean velocity profiles increases, although the velocity-defect profiles for the rough-wall cases show good agreement with the profile from the smooth-wall case. The magnitude of the Reynolds stresses in the outer layer increases with an increase of k/δ. The outer layer similarity between the flows over the rough and smooth-walls is found when δ/k ≥ 250 and 100 for the 2D rod and 3D cuboid, respectively. The continuous increase of the Reynolds stresses in the outer layer with an increase of k/δ is explained by a large population of very long structures over the rough-wall flows. Because the characteristic width of the structures increases continuously with an increase of k/δ for the rod and cuboid roughness, a wide width of the structures leads to frequent spanwise merging between adjacent structures. The active spanwise merging events with an increase of k/δ increase the streamwise coherence of the structures with the appearance of significant meandering.  相似文献   

19.
An experimental study was performed to measure the flow properties of a vertically-orientated shear layer in the vicinity of a free-surface. The effect of surface contamination on the near surface flow field was also determined. Digital Particle Image Velocimetry was used to measure instantaneous and averaged velocity, vorticity, and Reynolds stresses. Results show that the presence of surfactants can cause directional shifts of the shear layer, as well as an overall damping of the turbulence in the vicinity of the free-surface, except in the vicinity of a Reynolds ridge where an increase in Reynolds stress was observed.  相似文献   

20.
We describe some recent developments of high-Reynolds-number asymptotic theory for the nonlinear stage of laminar-turbulent transition in nearly parallel flows. The classic weakly nonlinear theory of Landau and Stuart is briefly revisited with the dual purposes of highlighting its fundamental ideas, which continue to underlie much of current theoretical thinking, as well as its difficulty in dealing with unbounded flows. We show that resolving such a difficulty requires an asymptotic approach based on the high-Reynolds-number assumption, which leads to a nonlinear critical-layer theory. Major recent results are reviewed with emphasis on the non-equilibrium effect. Future directions of investigation are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号