首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
In our research work, we have looked at the way in which artefacts become, for teachers as well as for students, instruments of their mathematical activity. The issues related to the use of tools and technologies in mathematical education are now widely considered. A look to history highlights the different ways in which the same questions have been studied at different times and in different places. This suggests that the contribution of artefacts to mathematics learning should be considered in terms of various contexts. Our “visits” to these contexts will be guided by the coordination of two main theoretical frameworks, the instrumental approach and the semiotic mediation approach from the perspective of mathematics laboratory. This journey through history and schooling represents a good occasion to address some questions: Are there “good” contexts in which to develop mathematical instruments? Are there “good” teaching practices which assist students’ instrumental geneses and construct mathematical meanings? How is it possible to promote such teaching practices? Some study cases are discussed.  相似文献   

2.
Ole Skovsmose 《ZDM》2007,39(3):215-224
  相似文献   

3.
Computers, and computer‐related thinking structures, are only gradually influencing mathematics education. On the one hand, there is a discrepancy between involved teachers who already have changed their own classroom teaching to a great extent, and a majority of mathematics teachers who have not yet taken notice of the computer for teaching purposes. On the other hand, knowledge of the computer and of algorithms is frequently merely added to the mathematical subject matter. As opposed to that, the authors argue that it is necessary to genuinely integrate such subject matter, and to include general topics such as social impact and changed attitudes toward application. With regard to implementation, they develop concrete ideas which are aligned in a differentiated manner to the specific situation and the opportunities offered in the Federal Republic of Germany. The rationale for that is that only such reference to a specific situation will provide an opportunity for readers abroad to usefully apply approaches and ideas to the situation given in their own cultural environment.

An abbreviated version of this paper for cursory reading or other purposes has been marked by bold lines on the margin.

  相似文献   

4.
5.
The current study explored the difficulties teachers encounter when teaching common fractions division, focusing on teachers’ knowledge concerning this issue. Nine teachers who study towards a M.Ed. degree in mathematics education demonstrated the algorithms they apply in order to solve fractions division problems, described how they teach the subject, and attempted to explain a student's mistake, in understanding a word problem involving dividing by fraction. The findings indicate there is a missing link in the teachers’ pedagogical capability, stemming from insufficient content knowledge. They presented different solution algorithms and reported using constructivist teaching methods, yet the methods they described couldn't lead a student to understand the logic behind the algorithm they teach (invert-and-multiply – multiplication by an inverse number, in accordance with the requirements of the curriculum). Furthermore, the participating teachers did not possess specialized mathematics content knowledge (SCK) and knowledge of content and students (KCS), enabling them to identify the source of a student's misconception.  相似文献   

6.
Three issues concerning the relationship between research and practice are addressed. (1) A certain ‘prototype mathematics classroom’ seems to dominate the research field, which in many cases seems selective with respect to what practices to address. I suggest challenging the dominance of the discourse created around the prototype mathematics classroom. (2) I find it important to broaden the school-centred discourse on mathematics education and to address the very different out-of-school practices that include mathematics. Many of these practices are relevant for interpreting what is taking place in a school context. That brings us to (3) socio-political issues of mathematics education. When the different school-sites for learning mathematics as well as the many different practices that include mathematics are related, we enter the socio-political dimension of mathematics education.On the one hand we must consider questions like: Could socio-political discrimination be acted out through mathematics education? Could mathematics education exercise a regimentation and disciplining of students? Could it include discrimination in terms of language? Could it include sexism and racism? On the other hand: Could mathematics education bring about competencies which can be described as empowering, and as supporting the development of mathematical literary or a ‘mathemacy’, important for the development of critical citizenship?However, there is no hope for identifying a one-way route to mathemacy. More generally: There is no simple way of identifying the socio-political functions of mathematics education. Mathematics education has to face uncertainty, and this challenge brings us to the notion of responsibility.  相似文献   

7.
We examine issues that arise in students’ making of generalizations about geometrical figures as they are introduced to linear functions. We focus on the concepts of patterns, function, and generalization in mathematics education in examining how 15 third grade students (9 years old) come to produce and represent generalizations during the implementation of two lessons from a longitudinal study of early algebra. Many students scan output values of f(n) as n increases, conceptualizing the function as a recursive sequence. If this instructional route is pursued, educators need to recognize how students’ conceptualizations of functions depart from the closed form expressions ultimately aimed for. Even more fundamentally, it is important to nurture a transition from empirical generalizations, based on conjectures regarding cases at hand, to theoretical generalizations that follow from operations on explicit statements about mathematical relations.  相似文献   

8.
Roland W. Scholz 《ZDM》2007,39(1-2):51-61
In the 1950s, game and decision theoretic modeling emerged—based on applications in the social sciences—both as a domain of mathematics and interdisciplinary fields. Mathematics educators, such as Hans Georg Steiner, utilized game theoretical modeling to demonstrate processes of mathematization of real world situations that required only elementary intuitive understanding of sets and operations. When dealing with n-person games or voting bodies, even students of the 11th and 12th grade became involved in what Steiner called the evolution of mathematics from situations, building of mathematical models of given realities, mathematization, local organization and axiomatization. Thus, the students could participate in processes of epistemological evolutions in the small scale. This paper introduces and discusses the epistemological, cognitive and didactical aspects of the process and the roles these activities can play in the learning and understanding of mathematics and mathematical modeling. It is suggested that a project oriented study of game and decision theory can develop situational literacy, which can be of interest for both mathematics education and general education.  相似文献   

9.
Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers’ opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were ‘difficult’ because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers’ lack of knowledge in terms of teaching mathematics.  相似文献   

10.
ABSTRACT

This article argues that mathematical knowledge, and its related pedagogy, is inextricably linked to the tools in which the knowledge is expressed. The focus is on digital tools and the different roles they play in shaping mathematical meanings and in transforming the mathematical practices of learners and teachers. Six categories of digital tool-use that distinguish their differing potential are presented: (1) dynamic and graphical tools; (2) tools that outsource processing power; (3) tools that offer new representational infrastructures for mathematics; (4) tools that help to bridge the gap between school mathematics and the students’ world; (5) tools that exploit high-bandwidth connectivity to support mathematics learning; and (6) tools that offer intelligent support for the teacher when their students engage in exploratory learning with digital technologies. Following exemplification of each category, the article ends with some reflections on the progress of research in this area and identifies some remaining challenges.  相似文献   

11.
The National Council of Teachers of Mathematics has proposed a broad core mathematics curriculum for all high school students. One emphasis in that core is on “mathematical connections” both among mathematical topics and between mathematics and other disciplines of study. It is suggested that mathematics should become a more integrated part of all students' high school education. In this article, working definitions for the terms curriculum, interdisciplinary, and integrated and a model of three categories of curriculum design based on the work of Harold Alberty are developed. This article then examines how a “connected” mathematics core curriculum might be situated within the different categories of curriculum organization. Examples from research on interdisciplinary education in high schools are presented. Issues arising from this study suggest the need for a greater emphasis on building and using models of curriculum integration both to frame and to give impetus to the work being done by teachers and administrators.  相似文献   

12.
Paola Valero 《ZDM》2007,39(3):225-233
This paper presents some theoretical tools to help understand the meaning of mathematics education as socio-political practices and the implications of these for researching mathematics education. Taking two cases of schools and students in Denmark and South Africa, the paper illustrates how the theoretical and methodological ideas come into operation when illuminating issues of equity. It is contended that the disadvantaged positioning of some students for participating in mathematics teaching and learning is the result of the routines, ideas, shared meanings, and ways of talking and conceiving mathematics education among the actors in the school organization, inside as well as outside the classroom.  相似文献   

13.
The terms inquiry-based learning and inquiry-based education have appeared with increasing frequency in educational policy and curriculum documents related to mathematics and science education over the past decade, indicating a major educational trend. We go back to the origin of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the theory of didactical situations, the realistic mathematics education programme, the mathematical modelling perspective, the anthropological theory of didactics, and the dialogical and critical approach to mathematics education. In an appendix these frameworks are illustrated with paradigmatic examples of teaching activities with inquiry elements. The paper is rounded off with a list of ten concerns for the development and implementation of IBME.  相似文献   

14.
Kruteskii's work on the mathematical abilities of school children is a seminal work on the nature of mathematical ability. However, the task of developing methods for the practical application of his work is still a significant problem in mathematics education. The authors have developed a practical application of Kruteskii's approach to the important problem of initially developing components of mathematical ability in student and thereafter identifying mathematically promising students. Examples of problems that were designed to develop ability to generalize, flexibility and reversibility of mental processes are presented. A practical guide for determining the level of development of components of mathematical abilities in individual students, in terms of specified observables, is presented as a set of structured reference tables. The authors set out a practical application protocol that combines use of the tables and sets of specially developed problems for initial development of mathematical abilities prior to identification of mathematically promising students in the general classroom. A significant motivation for this work is the desire to avoid time-consuming and resource intensive practices such as interviews and summer schools which therefore have been used successfully because these practices are now out of reach for all but very wealthy countries or highly ideologically driven systems. On the other hand, special examinations heavily depend on the level of preparedness of the students for the particular examination, and therefore some students with high abilities but with fewer opportunities to prepare could be overlooked.  相似文献   

15.
In discussion-oriented classrooms, students create mathematical ideas through conversations that reflect growing collective knowledge. Linguistic forms known as indexicals assist in the analysis of this collective, negotiated understanding. Indexical words and phrases create meaning through reference to the physical, verbal and ideational context. While some indexicals such as pronouns and demonstratives (e.g. this, that) are fairly well-known in mathematics education research, other structures play significant roles in math discussions as well. We describe students’ use of entailing and presupposing indexicality, verbs of motion, and poetic structures to express and negotiate mathematical ideas and classroom norms including pedagogical responsibility, conjecturing, evaluating and expressing reified mathematical knowledge. The multiple forms and functions of indexical language help describe the dynamic and emergent nature of mathematical classroom discussions. Because interactive learning depends on linguistically established connections among ideas, indexical language may prove to be a communicative resource that makes collaborative mathematical learning possible.  相似文献   

16.
Gila Hanna  Ed Barbeau 《ZDM》2008,40(3):345-353
Yehuda Rav’s inspiring paper “Why do we prove theorems?” published in Philosophia Mathematica (1999, 7, pp. 5–41) has interesting implications for mathematics education. We examine Rav’s central ideas on proof—that proofs convey important elements of mathematics such as strategies and methods, that it is “proofs rather than theorems that are the bearers of mathematical knowledge”and thus that proofs should be the primary focus of mathematical interestand then discuss their significance for mathematics education in general and for the teaching of proof in particular.  相似文献   

17.
The article starts focusing egalitarianism in a Norwegian curricular context in general and in mathematics education from primary schools to teacher education in particular. It progresses by locating and problematizing some major ideologies in mathematics education such as rationalism, activism, competitivism and ‘autodidactism’ on one hand and egalitarianism on the other. Some results from TIMSS, where Norway differs significantly from other countries, are touched upon and contrasted with episodes from qualitative studies. It is asked, from a general didaktic point of view, whether egalitarian values in mathematics education should be seen as strength or weekness, and the other way round, whether mathematical education contributes to or counterworks egalitarianism in society.  相似文献   

18.
In mathematics education, it is often said that mathematical statements are necessarily either true or false. It is also well known that this idea presents a great deal of difficulty for many students. Many authors as well as researchers in psychology and mathematics education emphasize the difference between common sense and mathematical logic. In this paper, we provide both epistemological and didactic arguments to reconsider this point of view, taking into account the distinction made in logic between truth and validity on one hand, and syntax and semantics on the other. In the first part, we provide epistemological arguments showing that a central concern for logicians working with a semantic approach has been finding an appropriate distance between common sense and their formal systems. In the second part, we turn from these epistemological considerations to a didactic analysis. Supported by empirical results, we argue for the relevance of the distinction and the relationship between truth and validity in mathematical proof for mathematics education.  相似文献   

19.
Mathematical writers, above all, Euclid, tend to present their theorems as decontextualized, abstract propositions, which has become the standard modus of textual presentation in theoretical mathematics. Mathematical commentators, however, provide their readers with personal names and historical facts in order to elucidate problems, provide contexts of discovery, or construct doxographies, among other things. Modern readers have used such information for the construction of histories of science. When we look at these passages, however, we see that personal names and information about mathematicians of the past can serve quite a range of different objectives, such as the strategic self-positioning of the commentator vis-à-vis the past or present of mathematics, the education of the reader, mathematical or moral, the construction of the history of the field, etc. Not only does the commentator present a persona of himself to the reader, he can also turn colleagues and predecessors into personae. This paper attempts to elucidate the practice, by offering four examples of such plays of and with personae, in Pappus, Eutocius, al-Nayrīzī, and Proclus.  相似文献   

20.
Evidence of deficiencies in basic mathematical skills of beginning undergraduates has been documented worldwide. Many different theories have been set out as to why these declines in mathematical competency levels have occurred over time. One such theory is the widening access to higher education which has resulted in a less mathematically prepared profile of beginning undergraduates than ever before. In response to this situation, the present study details the examination of a range of methods through which a student's mathematical performance in higher education could be predicted at the beginning of their third-level studies. Several statistical prediction methods were examined and the most effective method in predicting students’ mathematical performance was discriminant analysis. The discriminant analysis correctly classified 71.3% of students in terms of mathematics performance. An ability to carry out such a prediction in turn allows for appropriate mathematics remediation to be offered to students predicted to fail third-level mathematics. The results of the prediction of mathematical performance, which was carried out using a database consisting of over 1000 beginning undergraduates over a 3-year period, are detailed in this article along with the implications of such findings to educational policy and practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号