首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the contribution of diffusion and perfusion MR metrics in the discrimination of intracranial brain lesions at 3T MRI, and to investigate the potential diagnostic and predictive value that pattern recognition techniques may provide in tumor characterization using these metrics as classification features. Conventional MRI, diffusion weighted imaging (DWI), diffusion tensor imaging (DTI) and dynamic-susceptibility contrast imaging (DSCI) were performed on 115 patients with newly diagnosed intracranial tumors (low-and- high grade gliomas, meningiomas, solitary metastases). The Mann–Whitney U test was employed in order to identify statistical differences of the diffusion and perfusion parameters for different tumor comparisons in the intra-and peritumoral region. To assess the diagnostic contribution of these parameters, two different methods were used; the commonly used receiver operating characteristic (ROC) analysis and the more sophisticated SVM classification, and accuracy, sensitivity and specificity levels were obtained for both cases. The combination of all metrics provided the optimum diagnostic outcome. The highest predictive outcome was obtained using the SVM classification, although ROC analysis yielded high accuracies as well. It is evident that DWI/DTI and DSCI are useful techniques for tumor grading. Nevertheless, cellularity and vascularity are factors closely correlated in a non-linear way and thus difficult to evaluate and interpret through conventional methods of analysis. Hence, the combination of diffusion and perfusion metrics into a sophisticated classification scheme may provide the optimum diagnostic outcome. In conclusion, machine learning techniques may be used as an adjunctive diagnostic tool, which can be implemented into the clinical routine to optimize decision making.  相似文献   

2.
PurposeIn this study we systematically investigated different Dynamic Contrast Enhancement (DCE)-MRI protocols in the spine, with the goal of finding an optimal protocol that provides data suitable for quantitative pharmacokinetic modelling (PKM).Materials and methodsIn 13 patients referred for MRI of the spine, DCE-MRI of the spine was performed with 2D and 3D MRI protocols on a 3T Philips Ingenuity MR system. A standard bolus of contrast agent (Dotarem - 0.2 ml/kg body weight) was injected intravenously at a speed of 3 ml/s. Different techniques for acceleration and motion compensation were tested: parallel imaging, partial-Fourier imaging and flow compensation. The quality of the DCE MRI images was scored on the basis of SNR, motion artefacts due to flow and respiration, signal enhancement, quality of the T1 map and of the arterial input function, and quality of pharmacokinetic model fitting to the extended Tofts model.ResultsSagittal 3D sequences are to be preferred for PKM of the spine. Acceleration techniques were unsuccessful due to increased flow or motion artefacts. Motion compensating gradients failed to improve the DCE scans due to the longer echo time and the T2* decay which becomes more dominant and leads to signal loss, especially in the aorta. The quality scoring revealed that the best method was a conventional 3D gradient–echo acquisition without any acceleration or motion compensation technique. The priority in the choice of sequence parameters should be given to reducing echo time and keeping the dynamic temporal resolution below 5 s. Increasing the number of acquisition, when possible, helps towards reducing flow artefacts. In our setting we achieved this with a sagittal 3D slab with 5 slices with a thickness of 4.5 mm and two acquisitions.ConclusionThe proposed DCE protocol, encompassing the spine and the descending aorta, produces a realistic arterial input function and dynamic data suitable for PKM.  相似文献   

3.
We report our results on the effect of incorporation of inorganic fullerene like nanoparticles (IF) and inorganic nanotubes (INT) of WS2 into hybrid LED device structures. To disperse into a uniform fashion, the semiconducting INT/IF WS2 NTs were functionalized with SDS (sodium dodecylsulphate). The IF/INT WS2 nanotubes were used in combination with PEDOT:PSS and P3HT to realize the following LED device structures: ITO/(PEDOT:PSS):(WS2:SDS)/P3HT/LiF-Al; ITO/PEDOT:PSS/P3HT/WS2:SDS/LiF-Al. Morphological, optical and electrochemical analysis were performed to obtain the HOMO and the LUMO energy levels to hypothesize the most efficient device structure. The spectral positions of the electroluminescent bands were found out to be device-dependent and exhibits blue shift when the proposed nanostructure is dip coated on top of P3HT. Electro-optical analysis indicate that the WS2:SDS based P3HT/semiconductor film can improve the charge recombination probability owing to its dual functionality as hole blocking layer and electron injection moiety.  相似文献   

4.
The purpose of this work was to compare diagnostic accuracy of Diffusion Tensor Imaging (DTI), dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and their combination in diagnosing prostate cancer. Twenty-five patients with clinical suspicion of prostate cancer underwent MRI, prior to transrectal ultrasound-guided biopsies. MRI data were correlated to biopsy results. Logistic regression models were constructed for the DTI parameters, DCE MRI parameters, and their combination. The areas under the receiver operator characteristic curves (AUC) were compared between the models. The nonparametric Wilcoxon signed rank test was used for statistical analysis. The sensitivity and specificity values were respectively 81% (74–87%) and 85% (79–90%) for DTI and 63% (55–70%) and 90% (85–94%) for DCE. The combination “DTI or DCE MRI” had 100% (97–100%) sensitivity and 77% (69–83%) specificity, while “DTI and DCE MRI” had 44% (37–52%) sensitivity and 98% (94–100%) specificity. The AUC for DTI+DCE parameters was significantly higher than that for either DTI (0.96 vs. 0.92, P=.0143) or DCE MRI parameters (0.96 vs. 0.87, P=.00187) alone. In conclusion, the combination of DTI and DCE MRI has significantly better accuracy in prostate cancer diagnosis than either technique alone.  相似文献   

5.
6.
Echo-planar-based diffusion-weighted imaging (DWI) of the prostate is increasingly being suggested as a viable technique, complementing information derived from conventional magnetic resonance imaging methods for use in tissue discrimination. DWI has also been suggested as a potentially useful tool in the assessment of tumor response to treatment. In this study, the repeatability of apparent diffusion coefficient (ADC) values obtained from both DWI and diffusion tensor imaging (DTI) has been assessed as a precursor to determining the magnitude of treatment-induced changes required for reliable detection. The repeatability values of DWI and DTI were found to be similar, with ADC values repeatable to within 35% or less over a short time period of a few minutes and a longer time period of a month. Fractional anisotropy measurements were found to be less repeatable (between 26% and 71%), and any changes duly recorded in longitudinal studies must therefore be treated with a degree of caution.  相似文献   

7.
PURPOSE: Metallic implants cause enlarged artifacts in magnetic resonance (MR) images at higher magnetic fields, B0, due to their magnetic susceptibility. Interactions of conductive material with radio frequency (RF) pulses also change for higher field strengths, B0, due to the frequency dependence of resonance conditions. Systematic measurements on commercial aneurysm clips and simplified copper models were performed in order to investigate both phenomena at 1.5 and 3 T. MATERIALS AND METHODS: Six different commercial aneurysm clips made of titanium, straight copper wires and bent copper models were examined in Gd-DTPA-doped water. RF-related effects were measured by adapted 2D and 3D spin-echo sequences. For reliable differentiation from susceptibility-related effects, variable transmitter voltages were applied. In addition, RF-induced heating was controlled by an infrared (IR) camera. RESULTS: At 3 T, a significant RF-induced electric response could be demonstrated for the copper samples and more moderate for one of the commercial clips, dependent on the geometrical structure determining possible resonant RF coupling. Related RF effects could be distinguished from susceptibility artifacts: a signal enhancement at reduced transmitter voltages indicated locally amplified B1-field amplitudes. No significant heating effect could be measured by IR measurements. CONCLUSION: MR imaging was used to analyze possible RF-induced effects. At 3 T, resonant RF coupling even of small metallic implants has to be considered carefully. Despite a local enhancement of the RF amplitude, no significant RF-induced heating inside the surrounding fluid was found. A direct thermal endangering of patients seems to be unlikely, but extremely high B1-field amplitudes might occur adjacent to the metallic surface with potential nonthermal affection of tissue.  相似文献   

8.
The purpose of this study was to examine the potential of diffusion-weighted (DW) three-dimensional (3D) MP-RAGE MRI for diffusion-tensor mapping of the rat brain in vivo. A DW-3D-MP-RAGE (3D-DWI) sequence was implemented at 2.0 T using six gradient orientations and a b value of 1000 s/mm2. In this sequence, the preparation sequence with a "90 degrees RF-motion proving gradient (MPG): MPG-180 degrees RF-MPG-90 degrees RF" pulse train (DW driven equilibrium Fourier transform) was used to sensitize the magnetization to diffusion. A centric k-space acquisition order was necessary to minimize saturation effects (T1 contamination) from tissues with short relaxation time. The image matrix was 128x128x128 (interpolated from 64x64x64 acquisitions), which resulted in small isotropic DW image data (voxel size: 0.273x0.273x0.273 mm3). Moreover, 3D-DWI-derived maps of the fractional anisotropy (FA), relative anisotropy (RA) and main-diffusion direction were completely free of susceptibility-induced signal losses and geometric distortions. Two well-known commissural fibers, the corpus callosum and anterior commissure, were indicated and shown to be in agreement with the locations of these known stereotaxic atlases. The experiment took 45 min, and shorter times should be possible in clinical application. The 3D-DWI sequence allows for in vivo 3D diffusion-tensor mapping of the rat brain without motion artifacts and susceptibility to distortion.  相似文献   

9.
The interleaved-spiral magnetic resonance imaging (MRI) technique was implemented and optimized on a Bruker Biospec 47/30 scanner. The method gives rise to high-resolution images with a time saving factor of up to 8, as compared to the conventional approach. A multifunctional pulse sequence for the fast interleaved-spiral MRI was composed. These functions include spin intensity imaging, transverse relaxation timeT 2 and apparent diffusion-weighted imaging. The method was used to obtain the dynamic responses of a rat brain during ischemia.  相似文献   

10.
Three-dimensional (3D) magnetic resonance imaging (MRI) has shown great potential for studying the impact of prematurity and pathology on brain development. We have investigated the potential of optimized T1-weighted 3D magnetization-prepared rapid gradient-echo imaging (MP-RAGE) for obtaining contrast between white matter (WM) and gray matter (GM) in neonates at 3 T. Using numerical simulations, we predicted that the inversion time (TI) for obtaining strongest contrast at 3 T is approximately 2 s for neonates, whereas for adults, this value is approximately 1.3 s. The optimal neonatal TI value was found to be insensitive to reasonable variations of the assumed T1 relaxation times. The maximum theoretical contrast for neonates was found to be approximately one third of that for adults. Using the optimized TI values, MP-RAGE images were obtained from seven neonates and seven adults at 3 T, and the contrast-to-noise ratio (CNR) was measured for WM versus five GM regions. Compared to adults, neonates exhibited lower CNR between cortical GM and WM and showed a different pattern of regional variation in CNR. These results emphasize the importance of sequence optimization specifically for neonates and demonstrate the challenge in obtaining strong contrast in neonatal brain with T1-weighted 3D imaging.  相似文献   

11.
We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s.  相似文献   

12.
Diffusion tensor imaging (DTI) of the lumbar spine could improve diagnostic specificity. The purpose of this work was to determine the feasibility of and to validate DTI with single-shot fast spin-echo (SSFSE) for lumbar intervertebral discs at 1.5 and 3 T. Six normal volunteers were scanned with DTI-SSFSE using an eight- and a three-b-value protocol at 1.5 and 3 T, respectively. Apparent diffusion coefficient (ADC) values were computed and validated based on those obtained at 1.5 T from corresponding diffusion tensor scans using line scan diffusion imaging (LSDI), a technique that has been previously validated for use in the spine. Pearson correlation coefficients for LSDI and DTI-SSFSE ADC values were .88 and .89 for 1.5 and 3 T, respectively, with good quantitative agreement according to the Bland-Altman method. Results indicate that DTI-SSFSE is a candidate as a clinical sequence for obtaining diffusion tensor images of the lumbar intervertebral discs with scan times shorter than 4 min.  相似文献   

13.
The authors implemented bipolar velocity compensated pulse techniques for T2-weighted MR imaging of the brain. Signal-to-noise (S/N) and image quality was compared for pulse sequences with standard and optimized RF pulses, low and regular bandwidth versions and cardiac triggering. Images from bipolar velocity compensated sequences allowed better visualization of vessels and basilar cisterns and improved image quality relative to standard sequences without velocity compensation. The implementation of optimized RF pulses with bipolar sequences resulted in further improvement in image quality. Single echo sequences consistently had improved image quality and signal-to-noise relative to the second echo of a double echo sequence. Low bandwidth bipolar sequences with extended sampling period had 30% higher S/N, but at the cost of slight loss in edge definition. The highest image quality was obtained with the bipolar, optimized RF, single echo sequence. Using this technique contiguous high quality image slices could be obtained with velocity compensation. The addition of cardiac triggering to bipolar sequences resulted in slight improvement in image quality, but this difference was marginal and probably rarely necessary for MR imaging of the brain.  相似文献   

14.
In this study, we investigated the use of a single-shot fast spin-echo-based sequence to perform diffusion tensor imaging (DTI) with improved anatomic fidelity through the entire brain and the cervical spine. Traditionally, diffusion tensor images have been acquired by single-shot echo-planar imaging (EPI) methods in which large distortions result from magnetic susceptibility effects, especially near air-tissue interfaces. These distortions can be problematic, especially in anterior and inferior portions of the brain, and they also can severely limit applications in the spine. At higher magnetic fields these magnetic susceptibility artifacts are increased. The single-shot fast spin-echo (SSFSE) method used in this study utilizes radiofrequency rephasing in the transverse plane and thus provides diffusion images with negligible distortion even at 3 Tesla. In addition, the SSFSE sequence does not require multiple fast-receivers, which are not available on many magnetic resonance (MR) systems. Phased array coils were used to increase the signal-to-noise ratio of the images, offering a major inherent advantage in diffusion tensor imaging of the spine and brain. The mean diffusion measurements obtained with the SSFSE acquisition were not statistically different (p > 0.05) from EPI-based acquisitions. Compared to routine T(2)-weighted MR images, the DTI-EPI sequence showed up to 20% in elongation of the brain in the anterior-posterior direction on a sagittal image due to magnetic susceptibility distortions, whereas in the DTI-SSFSE, the image distortions were negligible. The diffusion tensor SSFSE method was also able to assess diffusion abnormalities in a brain stem hemorrhage, unaffected by the spatial distortions that limited conventional EPI acquisition.  相似文献   

15.
In this work, the usefulness of the inverse Laplace transformation (ILT) in the characterization of diffusion processes in the brain has been investigated. The method has been implemented on both phantom and in vivo cat brain data acquired at high resolution at 9.4 T. The results were compared with monoexponential and biexponential analyses of the same data. It is shown that in the case of diffusion restricted by white matter axonal tracts, the resulting diffusograms are in good agreement with the biexponential model. In gray matter, however, the non-monoexponential decay does not lead to a bimodal distribution in the ILT, even though the data can be fitted to a biexponential. This finding suggests the possibility of a distribution of diffusion coefficients rather than a discrete biexponential behavior. It is shown that this distribution is sensitive, for example, to experimental parameters such as the diffusion time. Thus, the ILT offers the possibility of implementing a unique tool for the analysis of heterogeneous diffusion, that is, the analysis of the diffusion coefficient distribution, which has the yet unexplored potential of being a valuable parameter in the characterization of tissue structure.  相似文献   

16.
Ultra-high-field 7 T magnetic resonance (MR) scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7 T human single-voxel MR Spectroscopy (MRS) studies have shown significant increases in signal-to-noise ratio (SNR) and spectral resolution as compared to lower magnetic fields but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7 T MR spectroscopic imaging. The goal of this study was to develop specialized radiofrequency (RF) pulses and sequences for three-dimensional (3D) MR spectroscopic imaging (MRSI) at 7 T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7 T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high-SNR phased-array 3D MRSI from the human brain.  相似文献   

17.
The objective of this study was to implement a clinically relevant multi-slice multi-echo imaging sequence in order to quantify multi-component T2 relaxation times for normal volunteers at both 1.5 and 3 T. Multi-echo data were fitted using a nonnegative least square algorithm. Twelve echo data with nonlinear echo sampling were acquired using a receive-only eight-channel phased array coil and volume head coil for phantoms and normal volunteers, and compared to 32-echo data with linear echo sampling. It was observed that the performance of the 180 degrees refocusing trains was more spatially uniform for the receive-only eight-channel phased array coil than for the head coil, particularly at 3 T. The phantom study showed that the estimated T2 relaxation times were accurate and reproducible for both single- and multi-slice acquisition from a commercial phantom with known T2 relaxation times. Short T2 components (T2 <50 ms) were mainly observed within the white matter for normal volunteers, and the fraction of short T2 water components (i.e., myelin water) was 7-12% of total water. It was observed that the calculated myelin water fraction map from the nonlinearly sampled 12-echo data was comparable with that from the linearly sampled 32-echo data. Quantification of T2 relaxation times from multi-slice images was accomplished with a clinically acceptable scan times (16 min) for normal volunteers by using a nonselective T2 prep imaging sequence. The use of the eight-channel head coil involved more accurate quantification of T2 relaxation times particularly when the number of echoes was limited.  相似文献   

18.

Introduction

Treatment induced necrosis is a relatively frequent finding in patients treated for high-grade glioma. Differentiation by imaging modalities between glioma recurrence and treatment induced necrosis is not always straightforward. This is a comparative study of diffusion tensor imaging (DTI), dynamic susceptibility contrast MRI and 99mTc-Tetrofosmin brain single-photon emission computed tomography (SPECT) for differentiation of recurrent glioma from treatment induced necrosis.

Methods

A prospective study was made of 30 patients treated for high-grade glioma who had suspected recurrent tumor on follow-up MRI. All had been treated by surgical resection of the tumor followed by standard postoperative radiotherapy with chemotherapy. No residual tumor had been found on brain imaging immediately after the initial treatment. All the patients were studied with dynamic susceptibility contrast brain MRI and, within a week, 99mTc-Tetrofosmin brain SPECT.

Results

Both 99mTc-Tetrofosmin brain SPECT and dynamic susceptibility contrast MRI could discriminate between tumor recurrence and treatment induced necrosis with 100% sensitivity and 100% specificity. An apparent diffusion coefficient (ADC) ratio cut-off value of 1.27 could differentiate recurrence from treatment induced necrosis with 65% sensitivity and 100% specificity and a fractional anisotropy (FA) ratio cut-off value of 0.47 could differentiate recurrence from treatment induced necrosis with 57% sensitivity and 100% specificity. A significant correlation was demonstrated between 99mTc-Tetrofosmin uptake ratio and rCBV (P = 0.003).

Conclusions

Dynamic susceptibility contrast MRI and brain SPECT with 99mTc-Tetrofosmin had the same accuracy and may be used to detect recurrent tumor following treatment for glioma. DTI also showed promise for the detection of recurrent tumor, but was inferior to both dynamic susceptibility contrast MRI and brain SPECT.  相似文献   

19.
L-2-Chloropropionic acid (L-CPA) is selectively toxic to rat cerebellar granule cells; necrosis is first observed about 36 hours after administration of L-CPA (750 mg/kg p.o.) becoming more marked by 48 h. Parallel to the onset of cell death an increase in cerebellar water content and sodium concentration has been reported suggesting an oedematous reaction. In this study T(2)-weighted (T(2)WI) and diffusion weighted (DWI) imaging were used to detect the development of neuronal damage in the cerebellum of rats as a result of exposure to L-CPA. T(2)WI and DWI were not able to detect cerebellar abnormalities at 37 h post-dosing except for a slight swelling of the cerebellum. However, at 48 h post-dosing when cerebellar swelling and granule cell necrosis were marked, T(2)WI and DWI hyperintensities were observed in the cerebellum. Therefore, under the conditions of this study, MRI was not able to detect abnormalities in the cerebellum prior to the onset of the clinical signs of neurotoxicity or at the time of early histological changes. T(2)WI also suggested a marked increase in the amount of fluid in the ventricular system of rats 37 and 48 h after dosing; fluid accumulation was observed in all animals studied whether or not necrosis was detected. The occurrence of T(2)WI hyperintensity in the forebrain lead us to discover a new lesion in the habenular nucleus.  相似文献   

20.
PurposeTo evaluate the performance of combined integrated slice-by-slice shimming and readout-segmented EPI (irsEPI) for diffusion-weighted MR imaging (DWI) of the neck at 3 Tesla.MethodsThis study was approved by the local ethics committee. An anthropometric phantom of the head/neck region incorporating compartments with different diffusivities was constructed. In vivo measurements were performed in 10 healthy volunteers. DWI of the phantom and volunteers was performed on a 3 Tesla MR scanner using single shot EPI (sEPI), a prototype single shot EPI with integrated slice-by-slice shimming (iEPI), readout segmented EPI (rsEPI) and a prototype readout segmented EPI with integrated shimming irsEPI. Apparent diffusion coefficients (ADC) and spatial distortions of phantom compartments were quantified. For phantom and volunteer measurements, the presence of geometric distortions, signal losses, ghosting artifacts as well as overall image quality were visually assessed on a 4-point scale by two radiologists in consensus. In addition, failure of fat saturation was assessed in volunteer data.ResultsQuantification of ADC within the phantom compartments was comparable using the different EPI techniques without significant variations. Using irsEPI, spatial distortions in phase-encoding direction were markedly reduced compared to iEPI, rsEPI and especially sEPI. irsEPI yielded significantly better overall image quality compared to sEPI, iEPI and rsEPI in phantom data as well as volunteer measurements. Markedly reduced geometric distortions and signal loss as well as better fat saturation were observed using irsEPI.ConclusionThe use of irsEPI significantly improves image quality and reduces artifacts caused by magnetic field inhomogeneities in EPI based DWI of the head/neck at 3 Tesla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号