首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of the spatiotemporal (filamentation) instability of a laser pulse upon excitation of a plasma wave is studied numerically and analytically. It is shown that first, as in a medium with inertialless cubic nonlinearity, the filamentation of radiation occurs and then filaments are attracted to each other. The following evolution differs weakly from the evolution of a smoothed wave beam in a medium with inertial nonlinear response.  相似文献   

2.
3.
This paper reports on experimental investigations on relativistic self-focusing and self-channeling of a terawatt laser pulse (0.7 TW⩽P⩽15 TW) in an underdense plasma. We present results obtained with picosecond (τ=1 ps) and subpicosecond (τ=0.4 ps) pulses. In the “long pulse” regime, modifications in the laser propagation are observed for Pc, the critical power for self-focusing. By contrast, self-guiding of subpicosecond pulses is observed for P≈Pc. Using a paraxial envelope model describing the laser propagation and taking into account the plasma response to the ponderomotive force, it is shown that a maximum laser intensity of 5-15 times that reached in vacuum may be achieved when P is in the (1.25-4)×Pc range. It is also demonstrated that ion motion may significantly reduce the effective Pc  相似文献   

4.
The influence of relativistic-ponderomotive nonlinearities and the plasma inhomogeneity on the nonlinear interaction between a high-power laser beam and a warm underdense plasma are studied. It is clear that the relativistic ponderomotive force and the electron temperature modify the electron density distribution and consequently change the dielectric permittivity of the plasma. Therefore, by presenting the modified electron density and the nonlinear dielectric permittivity of the warm plasma, the electromagnetic wave equation for the propagation of intense laser beam through the plasma is derived. This nonlinear equation is numerically solved and the distributions of electromagnetic fields in the plasma, the variations of electron density, and plasma refractive index are investigated for two different background electron density profiles. The results show that the amplitude of the electric field and electron density oscillations gradually increase and decrease, during propagation in the inhomogeneous warm plasma with linear and exponential density profiles, respectively, and the distribution of electron density becomes extremely sharp in the presence of intense laser beam. It is also indicated that the electron temperature and initial electron density have an impact on the propagation of the laser beam in the plasma and change the plasma refractive index and the oscillations' amplitude and frequency. The obtained results indicate the importance of a proper choice of laser and plasma parameters on the electromagnetic field distributions, density steepening, and plasma refractive index variations in the interaction of an intense laser beam with an inhomogeneous warm plasma.  相似文献   

5.
In the present paper, we have studied the self-focusing of a laser beam in a relativistic plasma. We have set up the non-linear differential equation for the beam width parameter of the main beam by using the moment theory approach and solved it numerically by the Runge–Kutta method. The results obtained are in agreement with the findings of the simulation (3D PIC). A new stable form of self-channeling propagation has also been observed.  相似文献   

6.
The trial function in the variational-Lagrangian method is a fundamental method to explain the essential features of the laser pulse evolution in the plasma. Self-focusing behavior and compression of the laser pulse in plasma are analyzed, for both low and high intensity regimes. It is shown that the compression threshold depends on both pulse intensity and pulse length. In particular, in both regimes, the compression threshold is directly proportional to the pulse length. This is while this threshold is directly, in the linear regime, and inversely, in the nonlinear regime, proportional to pulse intensity. In the present work, the existence of oscillations is revealed, with a behavior akin to laser pulse width. Finally, the effects of pulse intensity, pulse length, and plasma density on compression are analyzed.  相似文献   

7.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   

8.
9.
10.
Based on the method of invariants of particle motion in a relativistic collisionless plasma, we obtain a series of exact nonlinear solutions describing stationary neutral current-carrying structures with self-consistent magnetic field in planar, cylindrical, and 2D geometries. The solutions correspond to space-inhomogeneous anisotropic particle distributions and have a functional degree of freedom, i.e., they do not require a known fixed form of energy distribution. Physical properties of the current sheets and filaments, including current localization and value, degree of anisotropy of the particle distribution, and constraints on the particle and magnetic-field energy-density ratio, are discussed. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 2, pp. 85–94, February 2009.  相似文献   

11.
The propagation of intense laser pulses in a plasma is discussed in terms of a constant shape, paraxial ray approximation. Self-focusing due to ponderomotive forces and relativistic effects is investigated. It is found that the stationary self-focusing behaviour of each mechanism treated separately is similar, with several orders of magnitude difference in critical power. In stationary self-focusing due to the combined mechanisms, complete saturation of ponderomotive self-focusing prevents the occurrence of relativistic effects. Self-focusing lengths and minimum radii are given for a large range of beam powers. A characteristic focal spot radius is found which depends only on the plasma density.  相似文献   

12.
We present a study of the effect of laser pulse temporal profile on the energy /momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressure-dominant (RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a high-energy plasma provide matching conditions that make it possible to exchange very effectively ordered kinetic energy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativistic case it approaches one. The momentum /energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse can accelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.  相似文献   

13.
An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativistic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. Up to the second order of the perturbation theory, a nonlinear Schr?dinger type (NST) equation for the complex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativistic effect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. The association between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg-de Varies equation, obtained by a reductive perturbation theory, is satisfied.  相似文献   

14.
By 3D particle-in-cell simulation and analysis, we propose a plasma lens to make high intensity, high contrast laser pulses with a steep front. When an intense, short Gaussian laser pulse of circular polarization propagates in near-critical plasma, it drives strong currents of relativistic electrons which magnetize the plasma. Three pulse shaping effects are synchronously observed when the laser passes through the plasma lens. The laser intensity is increased by more than 1 order of magnitude while the initial Gaussian profile undergoes self-modulation longitudinally and develops a steep front. Meanwhile, a nonrelativistic prepulse can be absorbed by the overcritical plasma lens, which can improve the laser contrast without affecting laser shaping of the main pulse. If the plasma skin length is properly chosen and kept fixed, the plasma lens can be used for varied laser intensity above 10(19) W/cm(2).  相似文献   

15.
 通过测量由等离子体临界面移动造成的反射激光的频移,研究了有质动力对超短脉冲激光与固体等离子体相互作用的影响。实验表明,当激光强度达到1017 W/cm2时,有质动力将明显地降低等离子体热膨胀速度,造成极陡的密度分布,使得等离子体中的主导吸收机制,由共振吸收转换为真空吸收。  相似文献   

16.
通过测量由等离子体临界面移动造成的反射激光的频移,研究了有质动力对超短脉冲激光与固体等离子体相互作用的影响。实验表明,当激光强度达到1017 W/cm2时,有质动力将明显地降低等离子体热膨胀速度,造成极陡的密度分布,使得等离子体中的主导吸收机制,由共振吸收转换为真空吸收。  相似文献   

17.
线性偏振激光在相对论等离子体中的调制不稳定性   总被引:1,自引:0,他引:1  
从相对论等离体中电磁波的非线性色散方程出发,利用Karpman方法获得了线性偏振波模所满足的非线性控制方程,在非线性色散方程和非线性控制方程的基础上对线性偏振激光在相对论等离体中传播的调制不稳定性进行分析,给出了调制不稳定的时间增长率与扰动态波数之间的函数关系。  相似文献   

18.
19.
The features of femtosecond laser pulse reflection from a plasma target of near-critical density were analytically and numerically studied in a wide range of laser pulse intensities and durations. Based on analytical calculations, it is shown that the pulse reflectance at a constant intensity decreases with decreasing pulse duration. Based of numerical simulation results, it is shown that, as a superintense femtosecond laser pulse is incident on a plasma layer with a concentration close to the critical one, a quasi-periodic electron-density structure is formed in the plasma bulk, which can both increase and decrease the the laser pulse reflectance.  相似文献   

20.
Resonant second harmonic generation by a Gaussian laser beam in a rippled density plasma is studied using the moment theory approach. The nonlinearity arises through the relativistic mass effect and ponderomotive forces. The laser beam creates a plasma channel and gives rise to electron density perturbation at the laser frequency. The density perturbation beats with electron quiver velocity to produce second harmonics. The ripple provides phase matching and makes the process a resonant one. The second harmonic power efficiency is increased effectively with density ripple. Self-focusing causes enhancement in the efficiency of harmonic generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号