首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a numerical simulation of the conduction and valence band edges of Cd1-xZnxS nanocrystallites using a one — dimensional potential model. Electron — hole pairs are assumed to be confined in nanospheres of finite barrier heights. Optical absorption measurements are used to fit the bandgap of the Cd1-xZnxS nanocrystal material. A theoretical analysis is also made to calculate the energy location of bound excitons and the oscillator strength of interband transitions as a function of zinc composition. The aim of the latter study is to investigate the optical behavior of Cd1-xZnxS nanocrystals. An attempt to explain all the results is presented.  相似文献   

2.
The effect of deposition time on the structural, electrical and optical properties of SnS thin films deposited by chemical bath deposition onto glass substrates with different deposition times (2, 4, 6, 8 and 10 h) at 60 °C were investigated. The obtained films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and optical absorption spectra. All deposited films were polycrystalline and had orthorhombic structure with small crystal grains. Their microstructures had changed with deposition time, and their compositions were nearly stoichiometric. Electrical parameters such as resistivity and type of electrical conduction were determined from the Hall Effect measurements. Hall Effect measurements show that obtained films have p-type conductivity and resistivity values of SnS films have changed with deposition time. For allowed direct, allowed indirect, forbidden direct and forbidden indirect transitions, band gap values varied in the range 1.30-1.97 eV, 0.83-1.36 eV, 0.93-1.49 eV and 0.62-1.23 eV, respectively.  相似文献   

3.
Fe-doped CdS (Cd0.98Fe0.02S) and Fe, Zn co-doped CdS (Cd0.98−xZnxFe0.02S (x=0.02, 0.04, and 0.06)) thin films have been successfully deposited on glass substrate by chemical bath deposition technique using aqueous ammonia solution at pH = 9.5. Phase purity of the samples having cubic structure with (111) as the preferential orientation was confirmed by X-ray diffraction technique. Shift of X-ray diffraction peak position towards higher angle side and decrease of lattice parameters, volume and crystallite size confirmed the proper incorporation of Zn into Cd–Fe–S except Zn=6%. The compositional analysis (EDX) showed that Cd, Fe, Zn and S are present in the films. The enhanced band gap and higher transmittance observed in Cd0.94Zn0.04Fe0.02S films are the effective way to use solar energy and enhance its photocatalytic activity under visible light. The enhanced green band emission than blue band by Zn-doping evidenced the existence of higher defect states.  相似文献   

4.
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase–rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29–3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.  相似文献   

5.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

6.
衬底温度对HfO_2薄膜结构和光学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用直流磁控反应溅射法,分别在室温,200,300,400和500℃下制备了HfO2薄膜。利用X射线衍射(XRD)、椭圆偏振光谱(SE)和紫外可见光谱(UVvis)研究了衬底温度对HfO2薄膜的晶体结构和光学性能的影响。XRD研究结果显示:不同衬底温度下制备的HfO2薄膜均为单斜多晶结构;随衬底温度的升高,(-111)面择优生长更加明显,薄膜中晶粒尺寸增大。SE和UVvis研究结果表明:随衬底温度升高,薄膜折射率增加,光学带隙变小;制备的HfO2薄膜在250~850nm范围内有良好的透过性能,透过率在80%以上。  相似文献   

7.
Polycrystalline CdS films were obtained by a micro-controlled SILAR deposition technique, using aqueous solutions of cadmium acetate and thiourea as precursors. The structural and optical properties of the films were found to be influenced by various deposition parameters such as number of immersion cycles, concentration of the precursors and temperature of the solutions. Contrary to the observations made by some researchers, we found that the thickness of the films increased continuously with number of immersion cycles and also with concentration of the precursor solutions. We also found that the films covered the substrates uniformly, without any voids, unlike the films obtained by others. Effect of deposition parameters on thickness, substrate coverage, grain size, chemical composition, optical band gap and other properties of the films is discussed in detail.  相似文献   

8.
Nanocrystalline ZnO thin films were deposited at different temperatures (Ts = 325 °C–500 °C) by intermittent spray pyrolysis technique. The thickness (300 ± 10 nm) independent effect of Ts on physical properties was explored. X-Ray diffraction analysis revealed the growth of wurtzite type polycrystalline ZnO films with dominant c-axis orientation along [002] direction. The crystallite size increased (31 nm–60 nm) and optical band-gap energy decreased (3.272 eV–3.242 eV) due to rise in Ts. Scanning electron microscopic analysis of films deposited at 450 °C confirmed uniform growth of vertically aligned ZnO nanorods. The films deposited at higher Ts demonstrated increased hydrophobic behavior. These films exhibited high transmittance (>91%), low dark resistivity (~10?2 Ω-cm), superior figure of merit (~10?3 Ω?1) and low sheet resistance (~102 Ω/□). The charge carrier concentration (η -/cm3) and mobility (μ – cm2V?1s?1) are primarily governed by crystallinity, grain boundary passivation and oxygen desorption effects.  相似文献   

9.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

10.
Bismuth (Bi) thin films of different thicknesses were deposited onto Si(1 0 0) substrate at various substrate temperatures by thermal evaporation technique. Influences of thickness and deposition temperature on the film morphologies, microstructure, and topographies were investigated. A columnar growth of hexahedron-like grains with bimodal particle size distribution was observed at high deposition temperature. The columnar growth and the presence of large grains induce the Bi films to have large surface roughness as evidenced by atomic force microscopy (AFM). The dependence of the crystalline orientation on the substrate temperature was analyzed by X-ray diffraction (XRD), which shows that the Bi films have completely randomly oriented polycrystalline structure with a rhombohedral phase at high deposition temperature (200 °C) and were strongly textured with preferred orientation at low deposition temperatures (30 and 100 °C).  相似文献   

11.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

12.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

13.
In this work thin CdS films using glycine as a complexing agent were fabricated by chemical bath deposition and then doped with silver (Ag), by an ion exchange process with different concentrations of AgNO3 solutions. The CdS films were immersed in silver solutions using different concentrations during 1 min for doping and after that the films were annealed at 200 °C during 20 min for dopant diffusion after the immersion on the AgNO3 solutions. The aim of this research was to know the effects of different concentrations of Ag on the optical and structural properties of CdS thin films. The optical band gap of the doped films was determined by transmittance measurements, with the results of transmittance varying between 35% and 70% up to 450 nm in the electromagnetic spectra and the band gap varying between 2.31 and 2.51 eV depending of the silver content. X-ray photoelectron spectroscopy was used to study the influence of silver on the CdS:Ag films, as a function of the AgNO3 solution concentration. The crystal structure of the thin CdS:Ag films was studied by the X-ray diffraction method and the film surface morphology was studied by atomic force microscopy. Using the ion exchange process, the CdS films’ structural, optical and electric characteristics were modified according to silver nitrate concentration used.  相似文献   

14.
This paper presents the chemical bath deposition of zinc selenide (n-ZnSe) nanocrystalline thin films on non-conducting glass substrates, in an aqueous alkaline medium using sodium selenosulphate as Se2− ion source. The X-ray diffraction studies show that the deposited ZnSe material is nanocrystalline with a mixture of hexagonal and cubic phase. The direct optical band gap ‘Eg’ for the as-deposited n-ZnSe films is found to be 3.5 eV. TEM studies show that the ZnSe nanocrystals (NCs) are spherical in shape. Formation of ZnSe has been confirmed with the help of infrared (IR) spectroscopy by observing bands corresponding to the multiphonon absorption. We demonstrate the effect of the deposition temperature and reactant concentration on the structural, optical and electrical properties of ZnSe films.  相似文献   

15.
ZnSe thin films have been prepared by inert gas condensation method at different gas pressures. The influence of deposition pressure, on structural, optical and electrical properties of polycrystalline ZnSe films have been investigated using X-ray diffraction (XRD), optical transmission and conductivity measurements. The X-ray diffraction study reveals the sphalerite cubic structure of the ZnSe films oriented along the (1 1 1) direction. The structural parameters such as particle size [6.65-22.24 nm], strain [4.01-46.6×10−3 lin−2 m−4] and dislocation density [4.762-18.57×1015 lin m−2] have been evaluated. Optical transmittance measurements indicate the existence of direct allowed optical transition with a corresponding energy gap in the range 2.60-3.00 eV. The dark conductivity (σd) and photoconductivity (σph) measurements, in the temperature range 253-358 K, indicate that the conduction in these materials is through an activated process having two activation energies. σd and σph values decrease with the decrease in the crystallite size. The values of carrier life time have been calculated and are found to decrease with the reduction in the particle size. The conduction mechanism in present samples has been explained, and the density of surface states [9.84-21.4×1013 cm−2] and impurity concentration [4.66-31.80×1019 cm−3] have also been calculated.  相似文献   

16.
Zinc sulphide thin films are deposited on SnO2/glass using the chemical bath deposition technique. X-ray diffraction and atomic force microscopy are used to characterize the structure of the films; the surface composition of the films is studied by Auger electrons spectroscopy, the work function and the photovoltage are investigated by the Kelvin method. Using these techniques, we specify the effect of pH solution and heat treatment in vacuum at 500 °C. The cubic structure corresponding to the (1 1 1) planes of β-ZnS is obtained for pH equal to 10. The work function (Φmaterial − Φprobe) for ZnS deposited at pH 10 is equal to −152 meV. Annealing at 500 °C increases Φm (by about 43 meV) and induces the formation of a negative surface barrier. In all cases, Auger spectra indicate that the surface composition of zinc sulphide thin films exhibits the presence of the constituent elements Zn and S as well as C and O as impurity elements.  相似文献   

17.
The explanation of anomalous optical constants in thin chemically distinct layers on substrates offered by Plumb is re-examined and extended. The model invokes the concept of the space charged boundary layer and treats the charge carrier population as a free-electron gas to derive the optical behaviour of thin surface films. The implication of the space charge means that the optical constants of a dielectric film on a metal will vary over a distance directly proportional to the dielectric constant of the film and inversly proportional to the concentration of the electrons at the metal/film interface. Similarly as the temperature increases this space charge region should extend to larger distances from the interface.  相似文献   

18.
High quality indium tin oxide (ITO) thin films (In2−xSnxO3: x = 0, 0.1 and 0.2) have been grown by using pulsed laser deposition technique on quartz substrates. The structural, morphological, optical and electrical investigations of deposited films have been studied as a function of substrate deposition temperatures and the Sn compositions. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) patterns affirm that each film is polycrystalline in nature with cubic bixbyite single phase structure which preferentially oriented along (222) Miller plane. The existence of chemical bonding and functional groups was investigated by FTIR spectroscopy. The TEM micrograph of films (@450°C) for x = 0.1 and x = 0.2 reveal spherical morphology with average particle size 63 nm and 51 nm, respectively. The SEM and AFM images show uniform flower like surface morphology and well-demonstrated nanosized spherical particles, respectively. The widening of the band gap of all the films were exclusively defined by Burstein-Moss shift. The Hall measurement reveals that each film is degenerate with n-type semiconducting nature along with high mobility. Low resistivity (2.024 × 10−4 Ω-cm) and high transparency (92.58%) along with high carrier concentration (8.915 × 1020 cm−3) were optimized for x = 0.1 film at 450°C deposition temperature.  相似文献   

19.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

20.
于天燕  秦杨  刘定权 《物理学报》2013,62(21):214211-214211
对不同温度下沉积的ZnS薄膜的结晶情况和光学特性进行了研究, 结果表明:沉积温度对ZnS薄膜的物理和光学特性有较大影响, 不同的温度沉积的ZnS薄膜具有不同的择优取向, 牢固度也大不相同; 不同沉积温度下, ZnS薄膜的光学常数也不尽相同. 温度为115 ℃和155 ℃时, ZnS薄膜的物理性能和光学性能较差, 不适合空间用光学薄膜的研制使用. 而190 ℃和230 ℃沉积温度下所得薄膜具有较好的物理和光学性能, 适合于不同要求的空间用薄膜器件的研制使用. 关键词: 硫化锌薄膜 沉积温度 表面形貌 光学常数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号