首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Large eddy simulations of subsonic round jets are carried out using high order compact finite difference scheme and an explicit filtering based approximate deconvolution method. The jets have a Mach number of 0.9 and Reynolds number of 4.5×105 based on jet diameter and centerline velocity at inflow. Results obtained for the mean flow and turbulence intensities agree well with those in existing literature. We also study the effects of co-flow velocity ratio on the flow physics. Increase in potential core length and decrease in spreading rate of jet is observed in the presence of co-flow. The effects of co-flow velocity ratio on the axial Reynolds stress and turbulent kinetic energy budgets are also presented. It is observed that increasing co-flow velocity ratio leads to reduction in the turbulence intensities and near-field sound levels.  相似文献   

4.
5.
A numerical simulation of a rectangular surface jet is performed at a Reynolds number of Rej=4400. The global parameters of the jet e.g. maximum velocity decay, jet surface normal and lateral spread rates, entrainment, jet momentum flux and turbulent momentum flux are in agreement with several other studies reported in the literature. It is shown that the mean velocity and Reynolds stress profiles scale with the maximum local streamwise velocity and jet half width in the surface normal and lateral directions. The current simulation provides balance, explicitly calculated budgets for the turbulence kinetic energy, Reynolds normal and shear stresses. The surface jet develops a thin layer of fast moving fluid in the lateral direction near the surface. This layer is called the ‘surface current’. It has been suggested that the surface current arises due to the Reynolds stress anisotropy in the near surface region. The current study shows that this explanation is incomplete. The turbulence production for the Reynolds stress in the lateral direction is negative, which can drive the mean flow in the lateral direction. The higher level of negative production in the near surface region is responsible for the development of the surface current.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
A fully developed turbulent channel flow controlled by traveling wave-like wall deformation under a constant pressure gradient condition is studied numerically and theoretically. First, direct numerical simulation (DNS) at three different friction Reynolds numbers, Reτ=90, 180, and 360, are performed to investigate the modification in turbulence statistics and their scaling. Unlike the previous study assuming a constant flow rate condition, suppression of the quasi-streamwise vortices is not observed in either drag decrease cases or drag increase cases. It is found in the drag reduction case, however, that the periodic component of the Reynolds shear stress (periodic RSS) is largely negative in the viscous sublayer and the buffer layer. For the maximum drag reduction case, the set of control parameters is found to be identical in wall units regardless of the Reynolds number, and the resulting mean velocity profiles are also observed to be approximately similar even with an additional case of Reτ=720. Based on this scaling, we propose a semi-empirical formula for the mean velocity profile modified by the present control. With this formula, about 20%25% drag reduction effect is predicted even at practically high Reynolds numbers, Reτ105106.  相似文献   

14.
15.
16.
17.
Toroidal magnetohydrodynamic flows are important for fusion technology because of the blanket surrounding the core of the fusion machine. The effect of the radius of toroidal square ducts on flow transition of an electromagnetically driven liquid metal is assessed. The flow governing equations are solved numerically using direct numerical simulation. Critical Reynolds (Re) numbers where transition occurs are obtained for Hartmann (Ha) numbers in the range of 3 < Ha < 500. The results are compared with previous experimental and numerical results of toroidal square ducts of various radii. It is shown that, independent of the toroidal duct mean radius (r), the transition occurs in three regimes: in the sub-magnetohydrodynamic regime for very low Ha numbers, in a plateau regime for 10 < Ha < 20 and in a higher Ha regime. By increasing the radius of the torus, a transition occurs at higher Reynolds numbers as turbulent fluctuations are developing inside the boundary layers of the cylindrical side walls. The results indicate that transition occurs at RerH̃a-3.39 in the sub-magnetohydrodynamic regime and at RerH̃a-1.4 in the magnetohydrodynamic one. The boundary layer thickness at the Hartmann walls were found to scale as Ha-0.8.  相似文献   

18.
19.
An extended version of the resolvent formulation is used to evaluate the use of anisotropic porous materials as passive flow control devices for turbulent channel flow. The effect of these porous substrates is introduced into the governing equations via a generalized version of Darcy’s law. Model predictions show that materials with high streamwise permeability and low wall-normal permeability (ϕxy=kxx/kyy1) can suppress resolvent modes resembling the energetic near-wall cycle. Based on these predictions, two anisotropic porous substrates with ϕxy>1 and ϕxy<1 were designed and fabricated for experiments in a benchtop water channel experiment. Particle Image Velocimetry (PIV) measurements were used to compute mean turbulence statistics and to educe coherent structure via snapshot Proper Orthogonal Decomposition (POD). Friction velocity estimates based on the Reynolds shear stress profiles do not show evidence of discernible friction reduction (or increase) over the streamwise-preferential substrate with ϕxy>1 relative to a smooth wall flow at identical bulk Reynolds number. A significant increase in friction is observed over the substrate with ϕxy<1. This increase in friction is linked to the emergence of spanwise rollers resembling Kelvin–Helmholtz vortices. Coherent structures extracted via POD analysis show qualitative agreement with model predictions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号