首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of elaboration parameters during the sol-gel process is studied for tin oxide films deposition. The Dip Coating Sol-Gel route can be divided into three elaboration stages: the pulling phase and the drying and densification steps. During the pulling phase, the relative humidity ratio and the withdrawal speed are found to influence the film morphology and the film thickness respectively. Then, we show how a correct control of the sample drying is able to eliminate cracks. The densification step (temperature and duration), leading to the final network, is considered in details, and resulting effects on physical properties are presented: crytallinity, optical behaviour, atomic density, stoichiometry, electrical conductivity etc... We show through these results the specificity of the tin oxide elaborated with our procedure  相似文献   

2.
Tin oxide nanoparticles prepared by an aqueous sol–gel method were deposited by dip-coating on fluorozirconate glass, ZBLAN (53%ZrF4-20%BaF2-4%LaF3-3%AlF3-20%NaF) to improve its resistance against wet corrosion. The aqueous leaching of uncoated and SnO2-coated fluorozirconate glass was studied by X-ray photoemission spectroscopy (XPS) and it was shown that even an ultra thin tin dioxide film provides good protection of the glass surface against the bulk propagation of the hydrolytic attack.  相似文献   

3.
Preparation of SnO2 Monolithic Gel by Sol-Gel Method   总被引:2,自引:0,他引:2  
The effects of aging of a wet gel at room temperature and a use of a drying control chemical additive (DCCA) were investigated on the prevention of cracking of the gel during drying. N,N-Dimethylformamide (DMF) having low surface tension was used as a DCCA in this study. Before drying, the aged wet gel was immersed in DMF for several days to replace the pore liquid in the wet gel with DMF.The longer the aging and DMF immersing times became, a fewer cracks generated during drying. Especially, the immersion in DMF for over 8 days made it possible to obtain the SnO2 gel monolith without cracking from the wet gel aged for short time (1 day). However, the wet gel aged for long time without immersing in DMF could not be dried without cracking. Therefore, the replacement of the pore liquid in the wet gel with DMF having low surface tension is thought to be more effective on avoiding a crack generation than aging. From a pore size distribution measurement by N2 gas adsorption, it was found that the pore size and the breadth of the pore size distribution of the dried gel became larger and narrower respectively with increasing DMF immersing time. DMF is thought to be capable of forming strong hydrogen bonding to hydroxyl groups remaining on the surface of the wet gel and providing a shielding cage around the reactants (Sn–OH), thus further condensation reaction is probably suppressed. Consequently, a large pore distribution is developed in the gel, which reduces the magnitude of capillary stress induced during drying.  相似文献   

4.
Sol-Gel Deposited Sb-Doped Tin Oxide Films   总被引:4,自引:0,他引:4  
The structural, electrical and optical properties of single sol-gel derived antimony-doped tin oxide (ATO) films sintered at 550°C have been measured. The reproducibility of both the preparation and the characterization procedures have been tested by a round-robin test involving eight laboratories within a Concerted European Action (CEA) project. The resistivity measured as a function of Sb content has been obtained by electric and reflectance and transmission measurements. Their differences are discussed in terms of structural and grain boundary effects. An increase of Sb content results in a decrease of the crystallite size (7.0 to 5.4 nm) and a greater influence of the grain boundary.  相似文献   

5.
SnO2 纳米棒的氧化还原特性   总被引:2,自引:0,他引:2  
 利用室温固相反应在 NaCl-KCl 熔盐介质中, 通过焙烧含 SnO2 纳米颗粒前驱体合成了 SnO2 纳米棒, 并采用 X 射线衍射、扫描电镜、透射电镜、选区电子衍射和 X 射线光电子能谱对 SnO2 纳米棒进行了表征. 结果表明, SnO2 纳米棒是表面光滑、结晶完整的金红石结构单晶体, 直径为 10~20 nm, 长度为几百纳米到几个微米. 程序升温还原结果表明, SnO2 纳米棒具有较好的氧化还原性能和催化活性. 探讨了 SnO2 纳米棒的氧化还原机理.  相似文献   

6.
Excitation and dynamic emission spectra of Eu3+ ions were simultaneously used with FTIR and Raman spectroscopy to study the structural evolution during SnO2 sol gel xerogel conversion. Results make evident an increase of the surroundings symmetry for the Eu3+ ions dissolved in SnO2 matrix and a decrease of the amount of hydroxo groups (Sn-OH) during drying. These phenomena were associated to the pursuit of the condensation reaction after gelation.  相似文献   

7.
Titanium dioxide (TiO2) thin films have been deposited on silicon and glass substrates by the sol-gel process using titanium iso-propoxide [Ti(O-i-C3H7)4]. The bond configuration of the TiO2 thin films was analyzed by using FTIR in the wavenumber range from 400 to 4000 cm–1. The spectral transmittance of as-deposited TiO2 films deposited on fused silica glass was measured in the wavelength range from 200 to 900 nm. X-ray diffraction measurements were performed to determine the crystallinity of the TiO2 films. As-deposited films were amorphous. As the film was annealed at higher temperature, the structure was transformed from amorphous to the anatase crystalline state. The chemical composition of the deposited film was investigated using X-ray photoelectron spectroscopy (XPS). The films are essentially stoichiometric with carbon as the dominant impurity on the surface. Raman spectra show the characteristic of TiO2 anatase phase. The electrical properties of the TiO2 films were measured using capacitance-voltage (C-V) and current-voltage techniques. From C-V measurements, the dielectric constants were calculated to be approximately 26 for the as-deposited films and 75–82 for films annealed at 700°C in different atmosphere. For the as-deposited samples, the breakdown voltage was 2.7 MV/cm, and for an electric field of 1 MV/cm, the leakage current was 5 × 10–5 A/cm2 and the resistivity was 2.2 × 1010 -cm.  相似文献   

8.
Sandu  C.S.  Teodorescu  V.S.  Ghica  C.  Hoffmann  P.  Bret  T.  Brioude  A.  Blanchin  M.G.  Roger  J.A.  Canut  B.  Croitoru  M. 《Journal of Sol-Gel Science and Technology》2003,28(2):227-234
Instead of classical or rapid thermal annealing, KrF excimer laser irradiation has been successfully applied to crystallize dried SnO2:Sb films elaborated by a sol-gel process. The penetration of the crystallization front below the film surface, as imaged by transmission electron microscopy, is controlled by the laser fluence and the number of pulses and can thus be confined in the film itself without affecting sensitive substrates. All films laser irradiated at fluences higher than 40 mJ/cm2 become conductive. At constant laser fluence, the electrical sheet resistance goes through a minimum with increasing number of pulses. The consequence of film's densification and morphology on electrical properties is discussed.  相似文献   

9.
Tin dioxide (SnO2) has intrinsic characteristics that do not favor its photocatalytic activity. However, we evidenced that surface modification can positively influence its performance for CO2 photoreduction in the gas phase. The hydroxylation of the SnO2 surface played a role in the CO2 affinity decreasing its reduction potential. The results showed that a certain selectivity for methane (CH4), carbon monoxide (CO), and ethylene (C2H4) is related to different SnO2 hydrothermal annealing. The best performance was seen for SnO2 annealed at 150 °C, with a production of 20.4 μmol g−1 for CH4 and 16.45 μmol g−1 for CO, while for SnO2 at 200 °C the system produced more C2H4, probably due to a decrease of surface −OH groups.  相似文献   

10.
In the sol-gel technology, either for bulk or thin films, the stability in time of the solutions is a major factor to control. An evolution of the solution may influence strongly the properties of the elaborated material (thickness, cracks, refractive index, conductivity, etc.), and cases have been reported where solutions had to be stored in a dry and cold place to prevent any hydrolysis-condensation reaction, and so any consequent gelation.This paper evaluates the influence of the solution aging on the properties of undoped SnO2 layers obtained by sol-gel dip-coating (SGDC). Results are given in relation with storage conditions and for experiences conducted over several months.The evolution of the solution viscosity is first followed, and the corresponding properties for the layers are presented: optical reflection and transmission, optical gap, conductivity, morphology... The importance of the interaction with water is discussed.  相似文献   

11.
高比表面积蠕虫状介孔SnO2的合成与表征   总被引:4,自引:0,他引:4  
 以聚乙二醇 (PEG) 为模板剂, 氯化锡为锡源, 尿素为沉淀剂, 采用水热法合成出高比表面积的蠕虫状介孔四方相金红石型 SnO2. 考察了 PEG 分子量及其浓度、水热温度和焙烧温度对 SnO2 孔结构和形貌的影响. 采用 X 射线衍射、N2 吸附-脱附、透射电镜、红外光谱和紫外-可见光谱等技术对样品进行了表征. 结果表明, 模板剂可被水洗除去, PEG 分子量对介孔 SnO2 的比表面积影响不大, 而 PEG 浓度、水热温度和焙烧温度的影响较大. 在以分子量为 6000 的 PEG 与 Sn 的摩尔比为 0.01 的条件下, 于 120 oC 水热处理 29 h 后可合成出比表面积高达 161 m2/g 和平均孔径为 2.6 nm 的蠕虫状介孔 SnO2. 所制得样品具有较好的紫外光吸收性能, 适宜用作催化剂、载体和气体传感器等.  相似文献   

12.
以CuSO_4·5H_2O和正硅酸乙酯为前驱体,配制了稳定透明的Cu~(2+)-SiO_2复合溶胶电解液。采用电化学-溶胶凝胶方法,在恒电位-0.9 V下得到Cu-SiO_2复合膜,该复合薄膜分别在250和450℃的热处理后得到Cu_2O-SiO_2和CuO-SiO_2复合薄膜。采用XRD、SEM/EDX和台阶仪表征了复合薄膜的组成、形貌和厚度;采用紫外-可见光谱和Z扫描技术研究了复合薄膜的线性和三阶非线性光学性能。结果表明Cu2O-SiO_2和CuO-SiO_2复合薄膜中的Cu含量、Cu的形态(如Cu_2O、CuO)及Cu_2O或CuO颗粒大小影响薄膜的光学带隙和三阶非线性光学性能,2种薄膜的光学带隙分别是2.67和2.54 eV,三阶非线性极化率χ(3)分别为2.31×10~(-6)和1.36×10~(-6) esu。  相似文献   

13.
以CuSO4·5H2O和正硅酸乙酯为前驱体,配制了稳定透明的Cu2+-SiO2复合溶胶电解液。采用电化学-溶胶凝胶方法,在恒电位-0.9 V下得到Cu-SiO2复合膜,该复合薄膜分别在250和450℃的热处理后得到Cu2O-SiO2和CuO-SiO2复合薄膜。采用XRD、SEM/EDX和台阶仪表征了复合薄膜的组成、形貌和厚度;采用紫外-可见光谱和Z扫描技术研究了复合薄膜的线性和三阶非线性光学性能。结果表明Cu2O-SiO2和CuO-SiO2复合薄膜中的Cu含量、Cu的形态(如Cu2O、CuO)及Cu2O或CuO颗粒大小影响薄膜的光学带隙和三阶非线性光学性能,2种薄膜的光学带隙分别是2.67和2.54 eV,三阶非线性极化率χ(3)分别为2.31×10-6和1.36×10-6 esu。  相似文献   

14.
核-壳式纳米SnO2/TiO2光催化剂的制备和性能   总被引:8,自引:0,他引:8  
 以纳米SnO2·nH2O胶体粒子为基质,采用活性层包覆法制备了纳米SnO2/TiO2复合光催化剂,并用R,TEM,XPS和XRD等手段进行了表征. 采用敌敌畏的光催化降解反应对所制催化剂的活性进行了评价. 结果表明,SnO2/TiO2为核-壳结构,粒径约为12 nm. SnO2/TiO2的光催化活性受TiO2含量及SnO2·nH2O乙醇溶液含水量的影响. 最佳条件为SnO2/TiO2中TiO2含量为56.45%,SnO2·nH2O乙醇溶液含水量为20%. 所制SnO2/TiO2光催化活性比纯TiO2显著提高,且光催化活性稳定,可重复使用.  相似文献   

15.
The effects of antimony modifying additive (0.15—0.50 at.% Sb) on the electrophysical and sorption properties of SnO2 powders with a well developed specific surface were studied in the temperature range of 25—250 °C. Small amounts of antimony (0.15 at.%) increase the conductivity of SnO2 containing SO2 and CO chemisorbed in the temperature range of 25—100 °C. This makes this composition promising as a sensitive element of gas sensors.  相似文献   

16.
Nanosized tin dioxide particles were prepared by sol-gel dialytic processes with tin(Ⅳ) chloride and alcohol as start materials. The nanoparticles of tin dioxide were charactered by thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET. The results show that the average diameter of tin dioxide particles dried at 353 K was about 2nm. Even if the tin dioxide particles were calcined at 873 K, the average diameter of particles was less than 10 nm. The removal of Cl^- was solved by using this kind of method. The mechanism of the formation of tin dioxide nanosized particles was proposed and analyzed in this paper. We also measured the sensitivity of the sensor based on the tin oxide powder calcined at 673K to NH3, alcohol, acetone, hexane and CO. The gas-sensing performance results indicate that this sensor has a higher sensitivity to alcohol and acetone, and selectivity for NH3, hexane and CO at an operating temperature of 343 K.  相似文献   

17.
In‐depth understanding of the catalytic active sites is of paramount importance for the design of efficient electrocatalysts for CO2 conversion. Here we highlight the structural evolution of SnO2 nanosheets for electrocatalytic CO2 reduction. The transformation of SnO2 into metallic Sn would occur on the surface of catalyst during the catalytic process, followed by enhanced selectivity and activity for the conversion of CO2 to HCOOH. Electrocatalytic characterization and structural analysis demonstrate that the metallic Sn derived from structural evolution plays a dominant role in the CO2 reduction to HCOOH. This work deepens the understanding of the catalytic mechanism and provides a new pathway for the rational design of advanced electrocatalysts for CO2 reduction.  相似文献   

18.
TiO2 nanocrystalline thin films with varying degree of porosity have been prepared using a low temperature method. TiO2 films of the anatase form have been obtained by using a polyethylene glycol (PEG) modified sol-gel method. Densification and crystallization of the films was found to result from the thermal treatment of the dip coated films in boiling water. The films have been characterized by Raman, XRD, FTIR, AFM and optical methods. Highly transparent films with transmission in excess of 85% and porosity as high as 58% are formed predominantly of anatase crystallites of dimensions of the order of 5 nm. Initial results on lithium intercalation into these films resulting in an efficient optical modulation in the visible and near infrared regions demonstrate a good potential of these films for electrochromic applications.  相似文献   

19.
A laser-assisted chemical vapor deposition scheme for SnO2 films has been developed, based on the UV multiphoton dissociation of di (n-butyl) tin diacetate. Doped films were produced by simultaneous photolysis of other inorganic precursors. Films were characterized by UV–visible spectroscopy, room-temperature resistance measurements in the presence of a variety of gas-phase contaminants, and the temperature dependence of film resistance. These preliminary investigations demonstrate the ability to vary detection sensitivity and selectivity by changing the dopant precursor identity. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
Recently nanocomposites with sensoring function are becoming a new area of interest in the field of optical gas sensor. In fact, the optical transmittance of nano-particles or thin films has been reported to be changed by atmosphere gases. In particular it was found that NiO, Co3O4 and Mn3O4 thin films showed reversible decrease in the Vis-NIR absorption due to CO.Aim of this work is the synthesis and the characterization of SiO2 sol-gel glass films doped with NiO nanocrystals.Films of composition (100 – X)SiO2-XNiO with X = 10, 20, 40, were obtained by mixing a matrix solution of Si(OC2H5)4 (TEOS) and CH3Si(OC2H5)3 (MTES) as SiO2 precursors, with a doping solution containing NiCl2 as precursor for NiO particles.3-Aminopropyltriethoxysilane (3-APTES), bearing either an ammine group capable of coordinating the Ni ions and hydrolysable siloxane groups for anchoring the metal complex moiety to the silicate matrix, was used as bifunctional ligand.Transmission electron microscopy micrographs showed a uniform distribution of round shaped nanoparticles in film heated at 500°C with a mean diameter of 2.5 nm.The film composition evaluated from Rutherford backscattering spectrometry was in good agreement with the nominal one. As expected the density of the films heated at 1000°C is much higher than the density of the film heated at 500°C due to a residual porosity. Fourier transform infrared spectra also confirmed the presence of residual porosity in the films heated at 500°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号