首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
For permutations ${\pi}$ and ${\tau}$ of lengths ${|\pi|\le|\tau|}$ , let ${t(\pi,\tau)}$ be the probability that the restriction of ${\tau}$ to a random ${|\pi|}$ -point set is (order) isomorphic to ${\pi}$ . We show that every sequence ${\{\tau_j\}}$ of permutations such that ${|\tau_j|\to\infty}$ and ${t(\pi,\tau_j)\to 1/4!}$ for every 4-point permutation ${\pi}$ is quasirandom (that is, ${t(\pi,\tau_j)\to 1/|\pi|!}$ for every ${\pi}$ ). This answers a question posed by Graham.  相似文献   

2.
It is conjectured that the set ${\mathcal {G}}$ of the primitive roots modulo p has no decomposition (modulo p) of the form ${\mathcal {G}= \mathcal {A} +\mathcal {B}}$ with ${|\mathcal {A}|\ge 2}$ , ${|\mathcal {B} |\ge 2}$ . This conjecture seems to be beyond reach but it is shown that if such a decomposition of ${\mathcal {G}}$ exists at all, then ${|\mathcal {A} |}$ , ${|\mathcal {B} |}$ must be around p 1/2, and then this result is applied to show that ${\mathcal {G}}$ has no decomposition of the form ${\mathcal {G} =\mathcal {A} + \mathcal {B} + \mathcal {C}}$ with ${|\mathcal {A} |\ge 2}$ , ${|\mathcal {B} |\ge 2}$ , ${|\mathcal {C} |\ge 2}$ .  相似文献   

3.
For C*-algebras A and B, the operator space projective tensor product ${A\widehat{\otimes}B}$ and the Banach space projective tensor product ${A\otimes_{\gamma}B}$ are shown to be symmetric. We also show that ${A\widehat{\otimes}B}$ is a weakly Wiener algebra. Finally, quasi-centrality and the unitary group of ${A\widehat{\otimes}B}$ are discussed.  相似文献   

4.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

5.
6.
This paper deals mainly with the St-Venant problem in a convex domain ?? of ${\mathbb{R}^N, N \geq 2}$ . A minimum principle for a combination of the stress function ${\psi}$ and ${|\nabla \psi|}$ is derived. Some possible applications are indicated.  相似文献   

7.
In this paper, we propose a property which is a natural generalization of Kazhdan??s property (T) and prove that many, but not all, groups with property (T) also have this property. Let ?? be a finitely generated group. One definition of ?? having property (T) is that ${H^{1}(\Gamma, \pi, {\mathcal{H}}) = 0}$ where the coefficient module ${{\mathcal{H}}}$ is a Hilbert space and ?? is a unitary representation of ?? on ${{\mathcal{H}}}$ . Here we allow more general coefficients and say that ?? has property ${F \otimes {H}}$ if ${H^{1}(\Gamma, \pi_{1}{\otimes}\pi_{2}, F{\otimes} {\mathcal{H}}) = 0}$ if (F, ?? 1) is any representation with dim(F) <??? and ${({\mathcal{H}}, \pi_{2})}$ is a unitary representation. The main result of this paper is that a uniform lattice in a semisimple Lie group has property ${F \otimes {H}}$ if and only if it has property (T). The proof hinges on an extension of a Bochner-type formula due to Matsushima?CMurakami and Raghunathan. We give a new and more transparent derivation of this formula as the difference of two classical Weitzenb?ck formula??s for two different structures on the same bundle. Our Bochner-type formula is also used in our work on harmonic maps into continuum products (Fisher and Hitchman in preparation; Fisher and Hitchman in Int Math Res Not 72405:1?C19, 2006). Some further applications of property ${F\otimes {H}}$ in the context of group actions will be given in Fisher and Hitchman (in preparation).  相似文献   

8.
For the lower Weyl spectrum $$\sigma_{\rm w}^-(T) = \bigcap_{0 \le K \in \mathcal{K}(E) \le T} \sigma(T - K),$$ where T is a positive operator on a Banach lattice E, the conditions for which the equality ${\sigma_{\rm w}^-(T) = \sigma_{\rm w}^-(T^*)}$ holds, are established. In particular, it is true if E has order continuous norm. An example of a weakly compact positive operator T on ? such that the spectral radius ${r(T) \in \sigma_{\rm w}^-(T) {\setminus} (\sigma_{\rm f}(T) \cup \sigma_{\rm w}^-(T^*))}$ , where σ f(T) is the Fredholm spectrum, is given. The conditions which guarantee the order continuity of the residue T ?1 of the resolvent R(., T) of an order continuous operator T ≥ 0 at ${r(T) \notin \sigma_{\rm f}(T)}$ , are discussed. For example, it is true if T is o-weakly compact. It follows from the proven results that a Banach lattice E admitting an order continuous operator T ≥ 0, ${r(T) \notin \sigma_{\rm f}(T)}$ , can not have the trivial band ${E_n^\sim}$ of order continuous functionals in general. It is obtained that a non-zero order continuous operator T : EF can not be approximated in the r-norm by the operators from ${E_\sigma^\sim \otimes F}$ , where F is a Banach lattice, ${E_\sigma^\sim}$ is a disjoint complement of the band ${E_n^\sim}$ of E*.  相似文献   

9.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

10.
In this paper we consider the space ${{{BMO}_o(\mathbb{R}, X)}}$ of bounded mean oscillations and odd functions on ${{\mathbb{R}}}$ taking values in a UMD Banach space X. The functions in ${{{BMO}_o(\mathbb{R}, X)}}$ are characterized by Carleson type conditions involving Bessel convolutions and γ-radonifying norms. Also we prove that the UMD Banach spaces are the unique Banach spaces for which certain γ-radonifying Carleson inequalities for Bessel–Poisson integrals of ${{{BMO}_o(\mathbb{R}, X)}}$ functions hold.  相似文献   

11.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

12.
13.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

14.
Let $\mathcal{A}$ be a Banach algebra. It is obtained a necessary and sufficient condition for the complete continuity and also weak complete continuity of symmetric abstract Segal algebras with respect to $\mathcal{A}$ , under the condition of the existence of an approximate identity for $\mathcal{B}$ , bounded in $\mathcal{A}$ . In addition, a necessary condition for the weak complete continuity of $\mathcal{A}$ is given. Moreover, the applications of these results about some group algebras on locally compact groups are obtained.  相似文献   

15.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

16.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

17.
18.
Let ${\mathcal{F}}$ be a family of connected graphs. A graph G is said to be ${\mathcal{F}}$ -free if G is H-free for every graph H in ${\mathcal{F}}$ . We study the problem of characterizing the families of graphs ${\mathcal{F}}$ such that every large enough connected ${\mathcal{F}}$ -free graph of even order has a perfect matching. This problems was previously studied in Plummer and Saito (J Graph Theory 50(1):1–12, 2005), Fujita et al. (J Combin Theory Ser B 96(3):315–324, 2006) and Ota et al. (J Graph Theory, 67(3):250–259, 2011), where the authors were able to characterize such graph families ${\mathcal{F}}$ restricted to the cases ${|\mathcal{F}|\leq 1, |\mathcal{F}| \leq 2}$ and ${|\mathcal{F}| \leq 3}$ , respectively. In this paper, we complete the characterization of all the families that satisfy the above mentioned property. Additionally, we show the families that one gets when adding the condition ${|\mathcal{F}| \leq k}$ for some k ≥ 4.  相似文献   

19.
Christian Delhommé 《Order》2006,23(2-3):221-233
We observe that, given a poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ and a finite covering ${\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} $ of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: $$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$ Conversely for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, every poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ of height at most $\xi_1\otimes\cdots\otimes\xi_n$ admits a partition ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ such that each ${\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at most $\xi_k$ . In particular for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, the ordinal $$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$ is the least $\xi$ for which the following partition relation holds $$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$ meaning: for every poset ${\left( {A,{\user1{\mathcal{R}}}} \right)}$ of height at least $\xi$ and every finite covering ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ , there is a $k$ for which the relation ${\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at least $\xi_k$ . The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.  相似文献   

20.
Given a function $\mathbb{L}_2 $ (?), its Fourier transform $g(x) = \hat f(x) = F[f](x) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {f(x)e^{ - ixt} dt} ,f(t) = F^{ - 1} [g](t) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {g(x)e^{ - ixt} dx} $ and the inverse Fourier transform are considered in the space f ε $\mathbb{L}_2 $ (?). New estimates are presented for the integral $\int\limits_{|t| \geqslant N} {|g(t)|^2 dt} = \int\limits_{|t| \geqslant N} {|\hat f(t)|^2 dt} ,N \geqslant 1,$ in the vase of f ε $\mathbb{L}_2 $ (?) characterized by the generalized modulus of continuity of the kth order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号