首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Danafar  Hossein  Hamidi  Mehrdad 《Chromatographia》2013,76(23):1667-1675

A selective and highly sensitive high performance liquid chromatography-electrospray ionization mass spectrometry method has been developed for determination of ezetimibe concentrations in human plasma. Ezetimibe was extracted from plasma with ethyl acetate followed by evaporation of the organic layer and, then, reconstitution of the residue in mobile phase before injection to chromatograph. The mobile phase consisted of acetonitrile-ammonium acetate (10 mM, pH 3.0), 75:25 (v/v). An aliquot of 10 μL was chromatographically analyzed on a prepacked Zorbax XDB-ODS C18 column (2.1 × 100 mm, 3.5 micron). Detection of analytes was achieved by mass spectrometry with atmospheric pressure chemical ionization (APCI) interface in the negative ion mode operated under the multiple-reaction monitoring mode (m/z transition: ezetimibe 408–271). Standard curves were linear (r = 0.998) over the wide ezetimibe concentration range of 0.05–30.0 ng mL−1 with acceptable accuracy and precision. The limit of detection was 0.02 ng mL−1. The validated LC–APCI–MS method has been used successfully throughout a bioequivalence study on an ezetimibe generic product in 24 healthy male volunteers.

  相似文献   

2.
A rapid and sensitive liquid chromatographic–tandem mass spectrometric method has been developed and validated for the estimation of sarpogrelate in human plasma. Sarpogrelate was extracted from human plasma by solid-phase extraction. Temocapril was used as the internal standard. Heated electron spray ionization mass spectrometry was performed on a TSQ Quantum Ultra MS system. The LC column was a Hypurity C18 and the mobile phase was 2 mM ammonium formate (pH 3.00 ± 0.05):acetonitrile (30:70 v/v). A flow rate of 0.250 mL min?1 was used. The quantitative analyses were carried out in the positive ion and full scan mode over the mass range m/z 60–500. The capillary, vaporiser temperatures were 325 and 200 °C respectively. The sheath gas pressure, spray voltage, collision energy and tube lense were 40, 3,500 V, 19 V, 198 V, respectively, and the mass spectra of the drugs were recorded by total ion monitoring. Retention times and characteristic mass fragments were recorded and the chosen diagnostic mass fragments were monitored in the mass chromatography mode. Signal intensities of each of the mass fragments: m/z 477 [M + H]+ for temocapril, m/z 430 [M + H]+ for sarpogrelate, were used for quantification. The calibration curves (the ratio between the peak areas as signal intensities of the drug analyzed and that of the internal standard (temocapril: m/z 477 [M + H]+) vs. the concentration of drug) exhibited linearity over the concentration range 5.00–2,500.00 ng mL?1 human plasma. The recovery and the accuracy were calculated by comparing the peak areas as the signal intensities of each mass fragment for the drug in spiked samples after solid-phase extraction from human plasma to the peak area as the signal intensity of the mass fragment of internal standard sample. The method involves a rapid solid phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection up to picogram levels with a total run time of 3.0 min only. The method was validated over the range of 5.0–2,500.0 ng mL?1. The absolute recoveries for sarpogrelate (93.72%) and IS (91.42%) achieved from spiked plasma samples were consistent and reproducible.  相似文献   

3.
An alternative rapid and sensitive liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous analysis of proguanil (PRO) and cycloguanil (CYC) in human plasma. The analytes were extracted from human plasma by solid phase extraction. Riluzole (RIL) was used as an internal standard for proguanil and cycloguanil. A HyPURITY Advance C18 column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatography conditions and mass spectrometric detection in the positive ionization mode using an API-4000 system. The proposed method has been validated with linear range of 1.5–150.0 ng mL?1 for PRO and 0.5–50.0 ng mL?1 for CYC. The inter-run and intra-run precision values are within 2.54, 9.19% for PRO and 1.99, 10.69% for CYC at LOQ levels. The overall recoveries for PRO and CYC were 102.52 and 106.72%, respectively. Total elution time was as low as 2.50 min. This validated method was used successfully for analysis of plasma samples from a bioequivalence study.  相似文献   

4.
Batifiban is a new platelet GPIIb/IIIa receptor antagonist. In this work, an analytical method based on liquid chromatography and electrospray ionization tandem mass spectrometry has been firstly developed and validated for the quantitative measurement of batifiban in human plasma to support the investigation of this compound. Separation of analyte and the internal standard eptifibatide was performed on a Thermo HyPURITY C18 column (150 × 2.1 mm, 5 μm) with a mobile phase consisting of formic acid 0.1% (v/v)–acetonitrile (40:60, v/v) at a flow rate of 0.25 mL min?1. The Waters QuattroMicro API triple quadrupole mass spectrometer was operated in multiple reaction monitoring mode via positive electrospray ionization interface using the transition m/z 819.2 → m/z (623.9 + 159.4) for batifiban and m/z 833.4 → m/z (645.7 + 159.3) for IS. The method was linear over the concentration range of 2.45–5,000 μg L?1. The intra- and inter- day precisions were less than 15% in terms of relative standard deviation, and the accuracy was within 8.5% in terms of relative error (RE). The lower limit of quantification (LLOQ) was identifiable and reproducible at 2.45 μg L?1 with acceptable precision and accuracy. The validated method offered sensitivity and wide linear concentration range. This method was successfully applied for the evaluation of pharmacokinetics of batifiban afer single oral doses of 55, 110 and 220 μg kg?1 batifiban to 36 Chinese healthy volunteers.  相似文献   

5.
A rapid and sensitive LC–MS–MS method has been developed and validated for simultaneous analysis of abacavir (ABA) and lamivudine (LAM) in human plasma. The analytes were extracted from human plasma by SPE. Nelfinavir (NEL) and emtricitabine (EMT) were used as the internal standards for ABA and LAM, respectively. An RP18 column enabled chromatographic separation of the analytes. The method involves simple isocratic chromatography and MS detection in positive-ionization mode. Validation of the method showed response was a linear function of concentration in the ranges 100.0–7000.0 ng mL?1 for ABA and 80.0–5000.0 ng mL?1 for LAM. At the LOQ levels, inter-run and intra-run precision were within 5.80 and 3.51%, respectively, for ABA and within 4.68 and 3.16%, respectively, for LAM. Overall recovery for ABA and LAM was 59.32 and 105.18%, respectively. Total elution time was 2 min only, which enabled quantification of more than 200 plasma samples per day. This validated method was used successfully for analysis of plasma samples from a bioequivalence study.  相似文献   

6.
A rapid and sensitive liquid chromatography-tandem mass spectrometry method(LC-MS/MS)was developed and validated for the quantification of fexofenadine in human plasma,to conduct comparative bioavailability studies.Human plasma was extracted with a mixture of dichloromethane-diethyl ether(volume ratio 2∶3)in a basic environment and the extract was separated on a C18 column with a mobile phase consisting of acetonitrile-methanol-10 mmol/L ammonium acetate(volume ratio 45∶45∶10).The analytes were detected via electrospray ionization(ESI)tandem mass spectrometry in the multiple-reaction-monitoring(MRM)mode.The linearity was within a range of 1-1000 ng/mL.The intra-and inter-day precision were〈4.1% and〈4.8%,respectively,and the accuracy was in the range of 95.0%-105%.The method was applied to the quantification of fexofenadine human plasma from 20 healthy male Chinese volunteers,according to a single dose,randomized,two-way crossover design with a two-week washout period.The mean values of major pharmacokinetic parameters of ρmax,AUC0-48,AUC0-∞,tmax,and t1/2 were determined from the plasma concentration.The analysis of variance(ANOVA)did not show any significant difference between the two products of fexofenadine and 90% confidence intervals fell within the acceptable range for bioequivalence.  相似文献   

7.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometry method has been developed and validated for the quantification of huperzine A in human plasma. After the addition of trimetazidine, the internal standard (IS) and sodium hydroxide, plasma samples were extracted using 5 mL ethyl acetate. The compounds were separated on an Agilent Zorbax SB C18 column (100 mm × 2.1 mm ID, dp 3.5 μm) using an elution system of 10 mM ammonium acetate solution–methanol–formic acid (18:82:0.1, v/v) as the mobile phase. The quantification of target compounds was obtained by using multiple reaction monitoring (MRM) transitions: m/z 243.1, 210.1 and 267.2, 166.0 were measured in positive mode for huperzine A and IS. Linearity was established for the range of concentrations 0.01–4.0 ng mL?1 with a coefficient of correlation (r) of 0.9991. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.01 ng mL?1. The method has been successfully applied to study the pharmacokinetics of huperzine A in healthy male Chinese volunteers.  相似文献   

8.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of memantine was developed and validated over the linearity range 0.1–25 ng mL?1 with 0.5 mL of plasma using procainamide as the internal standard. This analysis was carried out on a Cosmosil 5C18-MS column and the mobile phase was composed of methanol: 0.5% formic acid (50:50, v/v). Detection was performed on a triple–quadrupole tandem mass spectrometer using positive ion mode electrospray ionization and quantification was performed by multiple reaction monitoring mode. The MS–MS ion transitions monitored were m/z 180 → 107 and 236 → 163 for memantine and procainamide, respectively. The between- and within-day precision was less than 10.9% and accuracy was less than 2.5%. The lower limit of quantification (LLOQ) was 0.1 ng mL?1. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of memantine in healthy Chinese volunteers.  相似文献   

9.
An LC–MS method for the determination of dothiepin in human plasma was developed and validated. Sample preparation involved extraction with n-hexane:2-propanol (95:5). Separation was on an Ultimate XB C18 column (2.1 × 150 mm, 5 μm). A single-quadrupole mass spectrometer with an electrospray interface was operated in the selected-ion monitoring mode to detect the [M+H]+ ions at m/z 296 for dothiepin and at m/z 278 for the internal standard (amitriptylene). The method demonstrated good linearity from 0.78 ng mL?1 (the LOQ) to100 ng mL?1. The mean extraction recovery was 82.4% for dothiepin and and 84.2% for the internal standard. The intra-day and inter-day precision ranged from 8.5 to 11.4% and 9.7 to 12.1% (RSD), respectively. The method was successfully applied to bioequivalence studies of dothiepin hydrochloride tablets to obtain the pharmacokinetic parameters.  相似文献   

10.
A simple, rapid, specific and sensitive liquid chromatography–tandem mass spectrometric method has been developed and validated for the simultaneous estimation of alfuzosin and dutasteride in human plasma. Both alfuzosin and dutasteride were extracted from human plasma by solid-phase extraction using terazosin and finasteride as the internal standards for alfuzosin and dutasteride, respectively. Chromatographic separation of analytes and their respective internal standards was carried out using a Hypurity C18 (50 × 4.6 mm i.d., 5 μm particle size) column followed by detection using an applied biosystems API 5000 mass spectrometer with a UPLC as the front end. The method involves a rapid solid phase extraction from plasma, simple isocratic chromatographic conditions and mass spectrometric detection in the positive ionization mode using multiple reactions monitoring that enables detection down to low nanogram levels with a total run time of 2.5 min only. The method was validated over a range of 0.25–20.0 ng mL?1 for alfuzosin and 0.1–10.0 ng mL?1 for dutasteride. The absolute recoveries for alfuzosin (65.57%), dutasteride (103.82%), terazosin (69.38%) and finasteride (102.25%) achieved from spiked plasma samples were consistent and reproducible. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Due to the short run time of 2.5 min it was possible to analyze a throughput of more than 180 human plasma samples per day. The validated method can be successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailabilty or bioequivalence studies. As an example the application of this validated method to a bioequivalence study is also illustrated.  相似文献   

11.
Zhang  Tianhong  Meng  Ping  Kou  Wen  Ma  Rongli  Zhang  Cong  Sun  Yongbin 《Chromatographia》2010,71(11):1101-1105

A specific and sensitive UPLC-MS–MS was developed for the determination of trimetazidine in human plasma. The sample preparation was based on a single-step liquid–liquid extraction with acetic ether. The chromatographic separation was on a C18 analytical column (50 mm × 2.1 mm, 1.7 μm) with acetonitrile and 10 mM ammonium acetate (30:70, v/v) as the mobile phase, and a triple-quadrupole mass spectrometer equipped with an electrospray ionization source (ESI) applied for detection. The method was linear over the concentration ranges of 0.25–100.00 ng mL−1 for trimetazidine, and the lower limit of quantification (LLOQ) was 0.25 ng mL−1. The intra- and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, this method has been successfully applied to analyze plasma samples from a bioequivalence study with 18 volunteers.

  相似文献   

12.
A specific and sensitive UPLC-MS–MS was developed for the determination of trimetazidine in human plasma. The sample preparation was based on a single-step liquid–liquid extraction with acetic ether. The chromatographic separation was on a C18 analytical column (50 mm × 2.1 mm, 1.7 μm) with acetonitrile and 10 mM ammonium acetate (30:70, v/v) as the mobile phase, and a triple-quadrupole mass spectrometer equipped with an electrospray ionization source (ESI) applied for detection. The method was linear over the concentration ranges of 0.25–100.00 ng mL?1 for trimetazidine, and the lower limit of quantification (LLOQ) was 0.25 ng mL?1. The intra- and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, this method has been successfully applied to analyze plasma samples from a bioequivalence study with 18 volunteers.  相似文献   

13.
A highly sensitive liquid chromatography–tandem mass spectrometry (LC–MS–MS) method for the determination of troxerutin in human plasma using tramadol as internal standard (IS) has been developed and validated. Sample preparation involved liquid–liquid extraction with ethyl acetate–isopropanol (95:5, v/v). The analyte and IS were separated by RP–LC with gradient elution using 10 mM ammonium acetate containing 0.1% formic acid and methanol at a flow rate of 0.9 mL min?1. LC–MS–MS in the positive ion mode employed multiple reaction monitoring of the transitions at m/z 743.2→435.3 and m/z 264.1→58.0 for troxerutin and IS, respectively. The assay was linear in the concentration range 0.01–10 ng mL?1 with precision and accuracy within assay variability limits as per FDA guidelines. The assay was successfully applied to a pharmacokinetic study involving oral administration of 300 mg troxerutin to eight healthy Chinese volunteers.  相似文献   

14.
A liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was developed for the simultaneous determination of paracetamol, pseudoephedrine and chlorpheniramine in human plasma. Diphenhydramine was used as the internal standard. Analytes were extracted from alkalized human plasma by liquid–liquid extraction (LLE) using ethyl acetate. After electrospray ionization positive ion fragments were detected in the selected reaction monitoring (SRM) mode with a triple quadrupole tandem mass spectrometer. The method was linear in the concentration range of 20.0–10000.0 ng mL?1 for paracetamol, 1.0–500.0 ng mL?1 for pseudoephedrine and 0.1–50.0 ng mL?1 for chlorpheniramine. The intra- and inter-day precisions were below 14.5% and the bias was between ?7.3 and +2.8% for all analytes. The validated LC–MS–MS method was applied to a pharmacokinetic study in which each healthy Chinese volunteer received a tablet containing 300 mg benorylate, 30 mg pseudoephedrine hydrochloride and 2 mg chlorpheniramine maleate. This is the first assay method described for the simultaneous determination of paracetamol, pseudoephedrine and chlorpheniramine in human plasma samples.  相似文献   

15.
《Analytical letters》2012,45(7):1365-1379
Abstract

A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC–ESI–MS) method was developed and validated for the identification and quantification of indapamide in human plasma. After the addition of the internal standard (IS) and 0.1 M sodium hydroxide solution, plasma samples were extracted with diethyl ether. The organic layer was evaporated under a stream of nitrogen at 40°C. The residue was reconstituted with 200 µL methanol. The compounds were separated on a stainless‐steel column (C18 Shim‐pack 5 µm 150 mm×2.0 mm I.D., Shimadzu) at a flow rate of 0.2 mL/min by a gradient elution. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via an electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.5–100.0 ng/mL with a coefficient of determination (r) of 0.9998 and good back‐calculated accuracy and precision. The intra‐ and inter‐day precision (RSD%) was lower than 10% and accuracy ranged from 85% to 115%. The lower limit of quantification was identifiable and reproducible at 0.2 ng/mL with 0.2 mL plasma. The proposed method enables the unambiguous identification and quantification of indapamide for pharmacokinetic, bioavailability, or bioequivalence studies.  相似文献   

16.
To support real biological sample application, a simple, selective and rapid LC–MS method has been developed and validated for the sensitive determination of metoclopramide in rabbit blood, ex vivo permeation studies and pharmaceutical dosage form. LC–MS analysis was performed isocratically on a Zorbax SB-C18 column with a mobile phase consisting of methanol:ammonium acetate buffer (pH 3.0) 75:25 (v/v) at a flow rate of 0.70 mL min?1. The outlet of the column was connected to a single quadrupole mass spectrometer with positive mass spectrometric detection. Ions were detected in the positive multiple reaction monitoring mode. The assay was linear over the concentration range of 1.25–200 pg μL?1 with a limit of detection of 0.077 pg μL?1 for standard solutions and 2.5–200 pg μL?1 with a limit of detection of 0.42 pg μL?1 for serum samples. The method is applicable, covering a variety of pharmaceutical and biological studies. Metoclopramide was extracted from rabbit blood by liquid–liquid extraction using ether as the extraction solvent. The reproducibility of the method was found to be between 0.96 and 1.98 % (RSD) values. The proposed method has been extensively validated for the determination of metoclopramide in all working media. The sample preparations, flow rate and run time of the analytical systems are not time consuming. Moreover, for the stability of metoclopramide, the effect of temperature, UV light, H2O2, HCl and NaOH were also investigated.  相似文献   

17.
Jin Hua Wen  Yu Qing Xiong 《Chromatographia》2009,70(11-12):1715-1719
Liquid chromatography–electrospray ionization mass spectrometry has been used for rapid, selective, and sensitive quantitative analysis of mitiglinide in human plasma. Sample pretreatment involved solid-phase extraction from plasma with gliclazide as internal standard. Separation was performed on a C18 column (150 × 2.0 mm) with 71:29 (v/v) acetonitrile–water (containing 0.1% formic acid and 0.2 mmol L?1 ammonium acetate) as mobile phase at a flow rate of 0.2 mL min?1. The method was validated then successfully applied to a clinical bioequivalence study of mitiglinide in 20 healthy volunteers after oral administration.  相似文献   

18.
19.
20.
Xin Hu  Yun-Feng Lv  Kai-Shun Bi 《Chromatographia》2009,69(9-10):1073-1076
A rapid and simple high-performance liquid chromatographic tandem mass spectrometric method has been developed and validated for analysis of strictosamide in rat plasma. Chromatographic separation was achieved on a C18 column by gradient elution with mixtures of methanol, water, and acetonitrile containing 0.05% acetic acid. Digoxin was used as internal standard. Selected reaction monitoring (SRM) was used for MS quantitation. Linearity was good in the range 0.05–20 ng mL?1 in rat plasma. The lower limit of quantitation was 0.04 ng mL?1. The method is precise and reliable and can be applied to pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号