首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
High-resolution (0.001 cm(-1)) coherent anti-Stokes Raman spectroscopy (CARS) has been used to study the nu1 symmetric CO stretching mode of the quasi-linear molecule carbon suboxide, C3O2. Q-branch transitions are seen that originate from the ground state and from thermally populated levels of the nu7 CCC bending mode, which is of unusually low frequency. The intensity variation of the Q-branch features on cooling to about 120 K in a jet expansion requires the reversal of the order of assignment given in a previous Raman study at low resolution. The identification of the nu1 sigma(g)+ <-- sigma(g)+ transition from the ground state is confirmed by the absence of J(odd) Q-branch lines in the resolved CARS spectrum. Analysis of this band in terms of a quasi-linear model gives a good fit to the observed transitions and leads to vibrational-rotational parameters (in cm(-1)) of nu1 = 2199.9773(12) and (B' - B') = -2.044(6) x 10(-4). Other transitions originating from higher nu7 levels occur at only slightly lower wavenumber values and permit the calculation of the double minimum potential in the Q7 bending coordinate. The results indicate that the ground-state barrier to linearity (21.5 cm(-1)) increases by only 0.6 cm(-1) when the CO symmetric stretch is excited.  相似文献   

2.
Absorption spectrum of H(2)CS in the region 5.6-9.5 eV was recorded with a continuously tunable light source of synchrotron radiation. After we subtracted absorption bands of CS(2), our spectrum clearly shows vibrational progressions associated with transitions (1)A(1)(pi,pi*)-X (1)A(1) and (1)B(2)(n,4s)-X (1)A(1) in the region 5.6-6.7 eV. A spectrum from which absorption of C(2)H(4) and CS(2) are subtracted shows several discrete bands in the region 6.9-9.5 eV. A Rydberg state (1)B(2)(n,4p(z)) lying below Rydberg state (1)A(1)(n,4p(y)) is confirmed, and the C-H symmetric stretching (nu(1)) and CH out-of-plane bending (nu(4)) modes for a transition (1)B(2)(n,4s)-X (1)A(1) are identified. New transitions to Rydberg states associated with excitation to 5s-11s, 5p(z)-7p(z), 5p(y)-7p(y), and 3d-6d are identified based on quantum defects and comparison with vertical excitation energies predicted with time-dependent density-functional theory (TD-DFT) and outer-valence Green's-function (OVGF) methods. For lower excited states predictions from these TD-DFT6-31+G calculations agree satisfactorily with experimental values, but for higher Rydberg states the OVGF method using aug-cc-pVTZ basis set augmented with extra diffuse functions yields more accurate predictions of excitation energies.  相似文献   

3.
The ground- and several excited states of metal aromatic clusters, namely NaM(4) and NaM(4) (+/-) (M=Al,Ga,In) clusters have been investigated by employing complete active-space self-consistent-field followed by multireference singles and doubles configuration interaction computations that included up to 10 million configurations and other methods. The ground states NaM(4) (-) of aromatic anions are found to be symmetric C(4nu) ((1)A(1)) electronic states with ideal square pyramid geometries. While the ground state of NaIn(4) is also predicted to be a symmetric C(4nu) ((2)A(1)) square pyramid, the ground state of the NaAl(4) cluster is found to have a C(2nu) ((2)A(1)) pyramid with a rhombus base, and the ground state of NaGa(4) possesses a C(2nu) ((2)A(1)) pyramid with a rectangle base. In general, these structures exhibit two competing geometries, viz., an ideal C(4nu) structure and a distorted rhomboidal or rectangular pyramid structure (C(2nu)). All of the ground states of the NaM(4) (+) (M=Al,Ga,In) cations are computed to be C(2nu) ((3)A(2)) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM(4) (M=Al,Ga,In), and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al(4)Na(-) reported by Li et al. [X. Li, A. E. Kuznetov, H. F. Zheng, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001)]. The X state can be assigned to a C(2nu) ((2)A(1)) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ((2)B(1)) of the neutral NaAl(4) with the C(4nu) symmetry. The assignments of the excited states are consistent with the experimental excitation energies and the previous Green's function-based methods for the vertical transition energy separations between the X and A bands.  相似文献   

4.
High resolution photodetachment spectra of C4H- and C4D- obtained via slow electron velocity-map imaging (SEVI) are presented. The spectra reveal closely spaced transitions to the neutral 2Sigma+ and 2Pi states which can be distinguished based on the corresponding photoelectron angular distributions. The C4H ground state is confirmed as the X2Sigma+ state, with the excited A2Pi state lying only 213 cm(-1) higher (201 cm(-1) for C4D). The electron affinities (EAs) are slightly revised to EA (C4H)=28,497+/-8 cm(-1) and EA (C4D)=28,478+/-10 cm(-1). Progressions in low frequency bending vibrations are observed in both states, yielding experimental frequencies of nu7=179(169) cm(-1) and nu6=408(392) cm(-1) for the X2Sigma+ state of C4H (C4D), and nu7=220(215)cm(-1) and nu6=446(437) cm(-1) for the A2Pi state.  相似文献   

5.
The dissociation dynamics of the 6s and 4d Rydberg states of carbon disulfide (CS(2)*) are studied by time-resolved photoelectron spectroscopy. The CS(2) is excited by two photons of 267 nm (pump) to the 6s and 4d Rydberg states and probed by ionization with either 800 or 400 nm. The experiments can distinguish and successfully track the time dynamics of both spin [1/2] (upper) and [3/2] (lower) cores of the excited Rydberg states, which are split by 60 meV, by measuring the outgoing electron kinetic energies. Multiple mode vibrational wave packets are created within the Rydberg states and observed through recurrence interferences in the final ion state. Fourier transformation of the temporal response directly reveals the coherent population of several electronic states and vibrational modes. The composition of the wave packet is varied experimentally by tuning the excitation frequency to particular resonances between 264 and 270 nm. The work presented here shows that the decay time of the spin components exhibits sensitivity to the electronic and vibrational states accessed in the pump step. Population of the bending mode results in an excited state lifetime of as little as 530 fs, as compared to a several picosecond lifetime observed for the electronic origin bands. Experiments that probe the neutral state dynamics with 400 nm reveal a possible vibrationally mediated evolution of the wave packet to a different Franck-Condon window as a consequence of Renner-Teller splitting. Upon bending, symmetry lowering from D(infinityh) to C(2v) enables ionization to the CS(2) (+) (B (2)Pi(u)) final state. The dissociation dynamics observed are highly mode specific, as revealed by the frequency and temporal domain analysis of the photoelectron spectra.  相似文献   

6.
By using a high-resolution infrared (IR) laser to prepare propyne (C(3)H(4)) in selected rotational levels of the excited nu(1) (acetylenic C-H stretching) vibration mode prior to vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have obtained rotationally resolved VUV-PFI-PE spectra for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) band. The analysis of these PFI-PE spectra leads to the determination of the spin-orbit constant of A=-13.0+/-0.2 cm(-1) for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) state. Using this A constant and the relative rotationally selected and resolved state-to-state photoionization cross sections thus measured, we have obtained an excellent simulation for the VUV-PFI-PE origin band of C(3)H(4) (+)(X (2)E(32,12)), yielding a value of 83 619.0+/-1.0 cm(-1) (10.367 44+/-0.000 12 eV) for the adiabatic ionization energy of C(3)H(4) [IE(C(3)H(4))]. The present two-color IR-VUV-PFI-PE study has also made possible the determination of the C-H stretching frequencies nu(1) (+)=3217.1+/-0.2 cm(-1) for C(3)H(4) (+)(X (2)E(32,12)). The spectral assignment and simulation were guided by high-level ab initio calculations on the IE(C(3)H(4)), Franck-Condon factors for photoionization transitions, and rotational constants and vibrational frequencies for C(3)H(4) (+).  相似文献   

7.
A double minimum six-dimensional potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D2h) B4 isomer in its 1Ag electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm(-1) for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B4 it is the B1g (D4h) mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of 11B4 are calculated to be (splittings in parentheses): G(0)=2352(22) cm(-1), nu1(A1g)=1136(24) cm(-1), nu2(B1g)=209(144) cm(-1), nu3(B2g)=1198(19) cm(-1), nu4(B2u)=271(24) cm(-1), and nu5(Eu)=1030(166) cm(-1) (D4h notation). Their variations in all stable isotopomers were investigated. Due to the presence of strong anharmonic resonances between the B1g in-plane distortion and the B2u out-of-plane bending modes, the higher overtones and combination levels are difficult to assign unequivocally.  相似文献   

8.
Electronic structure calculations of the excited states of the benzene dimer using equation-of-motion coupled-cluster method are reported. The calculations reveal large density of electronic states, including multiple valence, Rydberg, and mixed Rydberg-valence states. The calculations of the oscillator strengths for the transitions between the excimer state (i.e., the lowest excited state of the dimer, 1(1)B(1g)) and other excited states allowed us to identify the target state responsible for the excimer absorption as the E(1u) state of a mixed Rydberg-valence character at 3.04 eV above the excimer (1(1)B(1g)). Although at D(6h) the 1(1)B(1g) → E(1u) transition is symmetry-forbidden, small geometric displacements (to D(2h)) that have a negligible effect on the excitation energy split this degenerate state into the dark (4B(3u)) and bright (4B(2u)) components (oscillator strength of 0.3 au). The excitation energy for this transition depends strongly on the dimer structure, which explains the broad character of the experimentally observed excimer absorption spectrum.  相似文献   

9.
The photoinduced Rydberg ionization spectrum of the third excited electronic state of phenylacetylene cation was recorded via the origin of the cation ground electronic state. The origin of this state is 17 834 cm(-1) above the ground state of the cation, and the spectrum shows well-resolved vibrational features to the energy of 2200 cm(-1) above this. An assignment of the vibrational structure was made by comparison to calculated frequencies and Franck-Condon factors. From the assignments, and electronic structure considerations, the electronic symmetry of the C state is established to be (2)B(1).  相似文献   

10.
Rotationally resolved infrared spectra are reported for the asymmetric C-H stretching fundamental bands of C(2)H(4) in helium nanodroplets, as well as two weak combination bands. The J=2 rotor levels are strongly shifted from the energies estimated from a rigid rotor calculation and can be accounted for with two centrifugal distortion constants. The excited states of the three bands with B(3u) symmetry are strongly coupled in the gas phase and exhibit lifetimes >100 ps in helium, with the upper member of the polyad exhibiting the shortest lifetime. In contrast, the nu(9) band (B(2u) symmetry) exhibits very broad, homogeneously broadened line profiles (full width at half maximum approximately 0.5 cm(-1)) corresponding to an excited state lifetime of approximately 10 ps. This short lifetime is presumed to be due to an efficient, solvent mediated vibration-to-vibration relaxation process. In addition, the absence of transitions to the 2(21) and 2(20) rotor levels in the nu(9) band suggests they form rotational resonances with the elementary modes of helium, resulting in very short excited state lifetimes of less than 2 ps.  相似文献   

11.
IR+UV double resonant ion-dip and ion-enhancement spectroscopies are employed to study the nu3 asymmetric CH stretch vibration fundamental of CH3 in the ground and 3p(z) Rydberg electronic states. CH3 radical is synthesized in the supersonic jet expansion by flash pyrolysis of azomethane (CH3NNCH3) prior to the expansion. The Q band of the 3(1) (1) 3p(z)<--X transition of CH3, not detected by conventional UV resonantly enhanced multiphoton ionization (REMPI) spectroscopy, is determined to lie at 59,898 cm(-1) using IR+UV REMPI spectroscopy. Energy of the asymmetric CH stretch of CH3 in the 3p(z) Rydberg state, nu3(3p(z)), is 3087 cm(-1), redshifted by approximately 74 cm(-1) with respect to ground state nu3(X).  相似文献   

12.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

13.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

14.
In the wavelength range of 235-354 nm, we have obtained the mass-resolved [1+1] two-photon dissociation spectra of CO(2) (+) via A (2)Pi(u,12)(upsilon(1)upsilon(2)0)<--X (2)Pi(g,12)(000) transitions by preparing CO(2) (+) ions in the X (2)Pi(g,12)(000) state via [3+1] multiphoton ionization of CO(2) molecules at 333.06 nm. The vibronic bands of (upsilon(1)20;upsilon(1)=0-11)micro (2)Pi(12) and (upsilon(1)20;upsilon(1)=0-6)kappa (2)Pi(12) involving the bending mode of CO(2) (+)(A (2)Pi(u,12)) were assigned. The spectroscopic constants of T(e)=27 908.9+/-1.1 cm(-1) [above CO(2) (+)(X (2)Pi(g,12))], nu(1)=1126.00+/-0.36 cm(-1), chi(11)=-1.602+/-0.005 cm(-1), nu(2)(micro (2)Pi(12))=402.5+/-13.3 cm(-1), and nu(2)(kappa (2)Pi(12))=493.1+/-23.6 cm(-1) for CO(2) (+)(A (2)Pi(u,12)) are deduced from the data of the A (2)Pi(u,12)(upsilon(1)upsilon(2)0)<--X (2)Pi(g,12)(000) transitions. The observed intensity reversal between (500) (2)Pi(12) and (420)micro (2)Pi(12) can be attributed to the conformational variation of CO(2) (+)(A (2)Pi(u,12)) from linear to bent, then the conversion potential barrier is estimated to be 5209 cm(-1) above CO(2) (+)(A (2)Pi(u,12)(000)). The wavelength and level dependence of the photofragment branching ratios have been measured and the dissociation dynamics of CO(2) (+) via A (2)Pi(u,12) state is discussed.  相似文献   

15.
《Chemical physics letters》1986,127(4):297-302
Two-color multiphoton ionization spectra of jet-cooled p-difluorobenzene due to the transitions from S1 state to highly excited Rydberg states have been observed. At least six different Rydberg series of s and d characters were found. The results indicate a reduction of molecular symmetry in the Rydberg state to C2h. The Rydberg states belonging to different series exhibit different ionization behavior.  相似文献   

16.
We use laser photoacoustic spectroscopy to obtain overtone spectra at three through six quanta of O-H stretch excitation (3nu(OH)-6nu(OH)) for methyl hydroperoxide (MeOOH). Extending the spectral regions beyond our previous work reveals new features that can be attributed to transitions involving torsion about the O-O bond. Experimental spectral profiles (3nu(OH)-6nu(OH)) and cross sections (3nu(OH)-5nu(OH)) at room temperature show a good agreement with the simulated spectra that we obtain from ab initio calculations employing a vibration-torsion model at 298 K. A Birge-Sponer analysis yields experimental values for the O-H stretch frequency (omega=3773+/-15 cm(-1)) and anharmonicity (omegax=94+/-3 cm(-1)). We also detect OH radicals by laser-induced fluorescence and present photodissociation action spectra of MeOOH in the regions of 4nu(OH) and 5nu(OH). While the spectral profile at 5nu(OH) mimics the photoacoustic spectrum, the peak intensity for transitions to torsionally excited states is relatively more intense in the action spectrum at 4nu(OH), reflecting the fact that the 4nu(OH) excitation energy is below the literature dissociation energy (D0=42.6+/-1 kcal mol(-1)) so that features in the action spectrum come from thermally populated excited states. Finally, we use our calculations to assign contributions to individual peaks in the room-temperature spectra and relate our findings to a recent dynamics study in the literature.  相似文献   

17.
Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing (1)Σ(g)(-) state has been excited via the intermediate c(4) (v = 0) (1)Π(u) Rydberg state. We present the analysis of the band located at T(v) = 10,800.7 ± 2 cm(-1) with respect to the intermediate state, 126,366 ± 11 cm(-1) with respect to the ground state, approximately 700 cm(-1) above the first ionization threshold. From the analysis a rotational constant of B(v) = 1.700 ± 0.005 cm(-1) has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c(4) (0) and c(5) (0) states are 5.6 and 4.4 ns, respectively, while the b(') (12), c(')(4) (4, 5, 6), and c(')(5) (0) states all have lifetimes in the range of hundreds of picoseconds.  相似文献   

18.
Electronic spectra of the C3N radical have been observed for the first time in the near ultraviolet wavelength region by laser induced fluorescence (LIF) spectroscopy. Seventeen vibronic bands of the B 2Pii-X 2Sigma+ electronic transition system of C3N were identified in LIF spectra of products in a discharge of HC3N. The origin of the B 2Pii state was determined to be 27,929.985(1) cm(-1) from rovibrational analyses. It was found that observations of two types of 2Sigma vibronic levels, which have 2Sigma+ and 2Sigma+/- symmetries originated from excitations of the nu4 trans-bending mode (omega4=369.1(20) cm(-1)) with a large Renner-Teller (RT) interaction (epsilon4=-0.1549(50)), and the nu5 cis-bending mode (omega5=163.24(84) cm(-1)) with a small Renner-Teller interaction (epsilon5=-0.0503(68)), respectively. Vibronic levels, with excitations of the C-C stretching (omega3=869.7 cm(-1)) mode, were also identified. The spin-orbit interaction constant was determined to be Aso=-36.7(50) cm(-1) from the RT analysis. In dispersed fluorescence spectra from B 2Pii, vibrational structures of the low-lying electronically excited A 2Pii state were clearly observed with a strong progression due to the nu3' mode, together with those of the X 2Sigma+ state with weak intensities. The origin of A 2Pii, T0=1844(3) cm(-1), and the vibrational frequencies, omega3'=883(3) cm(-1) and omega5'=121(3) cm(-1) for A 2Pii, and omega3"=1054(3) cm(-1), omega4"=405(3) cm(-1), and omega5"=131(3) cm(-1) for X 2Sigma+, were determined. Time profiles of fluorescence from B 2Pii have short (50-200 ns) and long (>1 micros) decay components with quantum beats, indicating that there is a competition between radiative decay and the nonradiative internal conversion to vibrationally highly excited A 2Pii and X 2Sigma+.  相似文献   

19.
The electronic spectrum of the aluminium containing species AlCCH has been detected in the gas phase in the region 315-355 nm. The experiment used a mass selective resonant two-color two-photon ionization technique coupled to a laser ablation source. Structures of the AlCCH isomers have been optimized using density functional theory (DFT) and the excitation energies to the low-lying electronic excited states calculated. Based on the analysis of the observed rotational structure and the theoretical data, the spectrum is assigned to the A (1)Pi<-- X (1)Sigma(+) electronic transition of linear AlCCH. The vibronic band system is complicated by the Renner-Teller effect in the excited state. The assignment yields nu(4)' = 516.4 cm(-1) for the stretching mode in the ground X (1)Sigma(+) state and nu(4)' = 654.5 cm(-1) for A (1)Pi excited state. Molecular constants determined from the rotational analysis are B(0)' = 0.16487(14), B(0)' = 0.17845(13) and T(0) = 28 755.04 cm(-1). The experimental and theoretical data indicate a shorter Al-C bond in the A (1)Pi excited than the X (1)Sigma(+) ground state.  相似文献   

20.
We report the measurement of a jet-cooled electronic spectrum of the silicon trimer. Si(3) was produced in a pulsed discharge of silane in argon, and the excitation spectrum examined in the 18 000-20 800 cm(-1) region. A combination of resonant two-color two-photon ionization (R2C2PI) time-of-flight mass spectroscopy, laser-induced fluorescence/dispersed fluorescence, and equation-of-motion coupled-cluster calculations have been used to establish that the observed spectrum is dominated by the 1(3)A(1)" - a? (3)A(2)' transition of the D(3h) isomer. The spectrum has an origin transition at 18,600 ± 4 cm(-1) and a short progression in the symmetric stretch with a frequency of ~445 cm(-1), in good agreement with a predicted vertical transition energy of 2.34 eV for excitation to the 1(3)A(1)" state, which has a calculated symmetric stretching frequency of 480 cm(-1). In addition, a ~505 cm(-1) ground state vibrational frequency determined from sequence bands and dispersed fluorescence is in agreement with an earlier zero-electron kinetic energy study of the lowest D(3h) state and with theory. A weaker, overlapping band system with a ~360 cm(-1) progression, observed in the same mass channel (m/z = 84) by R2C2PI but under different discharge conditions, is thought to be due to transitions from the (more complicated) singlet C(2v) ground state ((1)A(1)) state of Si(3). Evidence of emission to this latter state in the triplet dispersed fluorescence spectra suggests extensive mixing in the excited triplet and singlet manifolds. Prospects for further spectroscopic characterization of the singlet system and direct measurement of the energy separation between the lowest singlet and triplet states are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号