首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia adsorption on single-walled carbon nanotubes (SWNTs) was studied by means of infrared spectroscopy at both cryogenic (approximately 94 K) and room (approximately 300 K) temperatures. At 94 K, vacuum-annealed SWNTs showed no detectable ammonia uptake. However, the ammonia adsorption was found to be sensitive to the functionalities and defects on the nanotube surfaces. NH3 adsorption was detected on HNO3-treated nanotubes, characterized by significant functionalities and defects, prior to vacuum annealing. NH3 desorbed from those nanotubes above 140 K, indicating a weak adsorbate-nanotube interaction (approximately 30 kJ/mol). Exposure of annealed samples to ambient air, which possibly regenerated functionalities and defects on nanotube surfaces, restored partially the ammonia uptake capacity. No ammonia adsorption on SWNTs was observed by infrared spectroscopy at room temperature with up to 80 Torr dosing pressure. This work suggests the influence of functionalities and/or defect densities on the sensitivity of SWNT chemical gas sensors. Our theoretical studies on NH3 adsorption on pristine and defective tubes, as well as oxidized tubes, corroborate these findings.  相似文献   

2.
Phototropin is a plant blue-light sensor protein that possesses a flavin mononucleotide (FMN) as the chromophore in LOV domains. Its photoreaction is an adduct formation between FMN and a nearby cysteine that takes place in the triplet excited state of FMN. In this communication, we revealed that the reactive cysteine is protonated in the triplet excited state of the LOV2 domain of Adiantum phytochrome3 by means of low-temperature FTIR spectroscopy. Its hydrogen-bonding interaction is strengthened in the triplet excited state, presumably with the FMN chromophore. Such strong interaction drives adduct formation on a microsecond time scale.  相似文献   

3.
Chemical engineering of the single-walled carbon nanotube-nylon 6 interface   总被引:1,自引:0,他引:1  
We report an approach to the chemical engineering of the single-walled carbon nanotube (SWNT)-polymer interfacial interaction in a nylon 6 graft copolymer composite which is based on the degree of SWNT functionality. Continuous fibers are drawn from composites fabricated from the in situ polymerization of caprolactam with SWNTs possessing a range of carboxylic acid (SWNT-COOH) and amide (SWNT-CONH(2)) functionalities. Mechanical performance evaluation of the composite fibers shows that a high concentration of the carboxylic acid functional groups leads to a stronger SWNT-nylon interfacial interaction, as reflected in greater values of the Young's modulus and mechanical strength. Replacement of the COOH group by CONH(2) in the SWNT starting material changes the grafting polymerization chemistry, thereby leading to the covalent attachment of longer graft copolymer chains to the SWNTs, and alters the composite morphology while increasing the composite flexibility and toughness.  相似文献   

4.
The minimum energy structures of Ti covered (8,0) single-wall carbon nanotube (SWNT) have been investigated theoretically. Using available experimental data and the results of density functional theory calculations, we first parametrized a reliable empirical many-body potential energy function (PEF) for the CTi binary system. The PEF used in the calculations includes two- and three-body atomic interactions. Then performing molecular dynamics simulations at 1 and 300 K, we obtained the minimum-energy configurations for Ti covered (8,0)-SWNT. The configurations reported here include low and high coverage of Ti on nanotubes. We have found that one layer of Ti did not distort the nanotube significantly, whereas two-layer coverage showed an interesting feature: the second layer of Ti pushed the first layer inside the wall of nanotube, but the general shape of the nanotube was not affected so much.  相似文献   

5.
6.
In order to truly unlock advanced applications of single-walled carbon nanotubes (SWNTs), one needs to separate them according to both chirality and handedness. Here we show that the chiral d-ribityl phosphate chain of flavin mononucleotide (FMN) induces a right-handed helix that enriches the left-handed SWNTs for all suspended (n,m) species. Such enantioselectivity stems from the sp(3) hybridization of the N atom anchoring the sugar moiety to the flavin ring. This produces two FMN conformations (syn and anti) analogous to DNA. Electrostatic interactions between the neighboring uracil moiety and the 2'-OH group of the side chain provide greater stability to the anti-FMN conformation that leads to a right-handed FMN helix. The right-handed twist that the FMN helix imposes to the underlying nanotube, similar to "Indian burn", causes diameter dilation of only the left-handed SWNTs, whose improved intermolecular interactions with the overlaying FMN helix, impart enantioselection.  相似文献   

7.
We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, l-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.  相似文献   

8.
Poly(3‐hexylthiophene)/single‐walled carbon nanotube (P3HT/SWNT) materials are synthesized using an insitu Grignard metathesis approach. The structural properties and photophysics of the materials are studied using a multitude of techniques, including 1H NMR, FTIR, UV–vis absorption, Raman, photoluminescence (PL), and transient absorption spectroscopies. P3HT/SWNT composites with high P3HT regioregularity (rr > 96%) are observed. Raman spectroscopic data on the solid samples reveals an increase in the dispersion rate parameter with increasing SWNT concentration, thereby indicating close overlap and strong interactions between P3HT and the carbon nanotubes. Changes in the solution‐phase PL quantum yields and excited‐state lifetimes relative to pure P3HT support these conclusions, and indicate that strong interactions persist even after the composites are dispersed in organic solvents. The high regioregularity and enhanced P3HT–SWNT interactions are promising attributes for improving the morphology and efficiency of functional P3HT/SWNT materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 310–320  相似文献   

9.
A prototype amperometric immunosensor was evaluated based on the adsorption of antibodies onto perpendicularly oriented assemblies of single wall carbon nanotubes called SWNT forests. The forests were self-assembled from oxidatively shortened SWNTs onto Nafion/iron oxide coated pyrolytic graphite electrodes. The nanotube forests were characterized using atomic force microscopy and resonance Raman spectroscopy. Anti-biotin antibody strongly adsorbed to the SWNT forests. In the presence of a soluble mediator, the detection limit for horseradish peroxidase (HRP) labeled biotin was 2.5 pmol ml(-1) (2.5 nM). Unlabelled biotin was detected in a competitive approach with a detection limit of 16 nmol ml(-1) (16 microM) and a relative standard deviation of 12%. The immunosensor showed low non-specific adsorption of biotin-HRP (approx. 0.1%) when blocked with bovine serum albumin. This immunosensing approach using high surface area, patternable, conductive SWNT assemblies may eventually prove useful for nano-biosensing arrays.  相似文献   

10.
We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.  相似文献   

11.
We have found that racemic mixtures of chiral single-walled nanotubes (SWNTs) wrapped with d(GT)20 DNA oligomer exhibit circular dichroism (CD). We attribute the CD signal to induced CD arising from the coupling of transition moments of the SWNTs and the DNA. Although the nanotube mixture appears to contain both enantiomers in equal amounts, DNA-SWNT transition moment interaction is more constructive for one SWNT enantiomer over the other, resulting in an overall CD signal.  相似文献   

12.
We have designed a novel photodynamic therapy (PDT) agent using protein binding aptamer, photosensitizer, and single-walled carbon nanotube (SWNT). The PDT is based on covalently linking a photosensitizer with an aptamer then wrapping onto the surface of SWNTs, such that the photosensitizer can only be activated by light upon target binding. We have chosen the human alpha-thrombin aptamer and covalently linked it with Chlorin e6 (Ce6), which is a second generation photosensitizer. Our results showed that SWNTs are great quenchers to singlet oxygen generation (SOG). In the presence of its target, the binding of target thrombin will disturb the DNA interaction with the SWNTs and cause the DNA aptamer to fall off the SWNT surface, resulting in the restoration of SOG. This study validated the potential of our design as a novel PDT agent with regulation by target molecules, enhanced specificity, and efficacy of therapeutic function, which directs the development of photodynamic therapy to be safer and more selective.  相似文献   

13.
Field emission studies were conducted on as-produced CoMoCAT single-walled carbon nanotube/silica composites with controlled nanotube diameter and bundle size. It has been observed that the as-produced nanotube material does not need to be separated from the high-surface area catalyst to be an effective electron emitter. By adjusting the catalytic synthesis conditions, single-walled carbon nanotubes (SWNT) of different diameters and bundle sizes were synthesized. A detailed characterization involving Raman spectroscopy, optical absorption (vis-NIR), SEM, and TEM was conducted to identify the nanotube species present in the different samples. The synthesis reaction temperature was found to affect the nanotube diameter and bundle size in opposite ways; that is, as the synthesis temperature increased the nanotube average diameter became larger, but the bundle size became smaller. A gradual and consistent reduction in the emission onset field was observed as the synthesis temperature increased. It is suggested that the bundle size, more than the nanotube diameter or chirality, determines the field emission characteristics of these composites. This is a clear demonstration that field emission characteristics of SWNT can be controlled by the nanotube synthesis conditions.  相似文献   

14.
Simulation of adsorption of DNA on carbon nanotubes   总被引:2,自引:0,他引:2  
We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion.  相似文献   

15.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

16.
Single-walled carbon nanotubes (SWNTs) have remarkable and unique electronic, mechanical, and thermal properties, which are closely related to their chiralities; thus, the chirality-selective recognition/extraction of the SWNTs is one of the central issues in nanotube science. However, any rational materials design enabling one to efficiently extract/solubilize pure SWNT with a desired chirality has yet not been demonstrated. Herein we report that certain chiral polyfluorene copolymers can well-recognize SWNTs with a certain chirality preferentially, leading to solubilization of specific chiral SWNTs. The chiral copolymers were prepared by the Ni(0)-catalyzed Yamamoto coupling reaction of 2,7-dibromo-9,9-di-n-decylfluorene and 2,7-dibromo-9,9-bis[(S)-(+)-2-methylbutyl]fluorene comonomers. The selectivity of the SWNT chirality was mainly determined by the relative fraction of the achiral and chiral side groups. By a molecular mechanics simulation, the cooperative interaction between the fluorene moiety, alkyl side chain, and graphene wall were responsible for the recognition/dissolution ability of SWNT chirality. This is a first example describing the rational design and synthesis of novel fluorene-based copolymers toward the recognition/extraction of targeted (n,?m) chirality of the SWNTs.  相似文献   

17.
Fluorescence Correlation Spectroscopy (FCS) was used to investigate the excited-state properties of flavins and flavoproteins in solution at the single molecule level. Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and lipoamide dehydrogenase served as model systems in which the flavin cofactor is either free in solution (FMN, FAD) or enclosed in a protein environment as prosthetic group (lipoamide dehydrogenase). Parameters such as excitation light intensity, detection time and chromophore concentration were varied in order to optimize the autocorrelation traces. Only in experiments with very low light intensity ( < 10 kW/cm2), FMN and FAD displayed fluorescence properties equivalent to those found with conventional fluorescence detection methods. Due to the high triplet quantum yield of FMN, the system very soon starts to build up a population of non-fluorescent molecules, which is reflected in an apparent particle number far too low for the concentration used. Intramolecular photoreduction and subsequent photobleaching may well explain these observations. The effect of photoreduction was clearly shown by titration of FMN with ascorbic acid. While titration of FMN with the quenching agent potassium iodide at higher concentrations ( > 50 mM of I-) resulted in quenched flavin fluorescence as expected, low concentrations of potassium iodide led to a net enhancement of the de-excitation rate from the triplet state, thereby improving the fluorescence signal. FCS experiments on FAD exhibited an improved photostability of FAD as compared to FMN: As a result of stacking of the adenine and flavin moieties, FAD has a considerably lower triplet quantum yield. Correlation curves of lipoamide dehydrogenase yielded correct values for the diffusion time and number of molecules at low excitation intensities. However, experiments at higher light intensities revealed a process which can be explained by photophysical relaxation or photochemical destruction of the enzyme. As the time constant of the process induced at higher light intensities resembles the diffusion time constant of free flavin, photodestruction with the concomitant release of the cofactor offers a reasonable explanation.  相似文献   

18.
We report the synthesis of a single-walled carbon nanotube (SWNT) graft copolymer. This polymer was prepared by the functionalization of SWNTs with polyethyleneimine (PEI). We used this graft copolymer, SWNT-PEI, as a substrate for cultured neurons and found that it promotes neurite outgrowth and branching.  相似文献   

19.
An extensive study of the time dependence of DNA wrapping in single-walled nanotube (SWNT) dispersions has been carried out, revealing a number of unusual phenomena. SWNTs were dispersed in water with salmon testes DNA and monitored over a three-month period. Between 20 and 50 days after the sample was first prepared, the SWNT photoluminescence (PL) intensity was observed to increase by a factor of 50. This increase was accompanied by a considerable sharpening of the van Hove absorption peaks. High-resolution transmission electron microscopy (HRTEM) images showed the progressive formation of a coating of DNA on the walls of the nanotubes over the three-month period. HRTEM and circular dichroism spectroscopy studies showed that the improvement in both the NIR PL intensity and the van Hove absorption peaks coincided with the completion of a monolayer coating of DNA on the SWNT walls. HRTEM images clearly showed the DNA wrapping helically around the SWNTs in a surprisingly ordered fashion. We suggest that the initial quenching of NIR photoluminescence and broadening of absorption peaks is related to the presence of protonated surface oxides on the nanotubes. The presence of an ordered DNA coating on the nanotube walls mediates both deprotonation and removal of the surface oxides. An extensive DNA coating is required to substantially restore the photoluminescence, and thus, the luminescence switch-on and subsequent saturation indicate the completion of the DNA-wrapping process. The temperature dependence of the PL switch-on, and thus of the wrapping process, was investigated by measuring as functions of temperature both the time before PL switch-on and the time required for the PL intensity to saturate. This allowed the calculation of the activation energies for both the process preceding PL switch-on and the process limiting the rise of PL intensity, which were found to be 31 and 41 kJ mol (-1), respectively. The associated entropies of activation were -263 and -225 J mol (-1) K (-1), respectively. These negative activation entropies suggest that the rate-limiting step is characterized by a change in the system from a less-ordered to a more-ordered state, consistent with the formation of an ordered DNA coating.  相似文献   

20.
Raw, micrometric HiPCO single wall carbon nanotube (SWNT) material was submitted to harsh acid oxidative treatment with a 3:1 H2SO4/HNO3 mixture to give short residues of SWNT (s-SWNT, <200 nm length measured by TEM). s-SWNT was functionalized through the tip carboxylic groups by peptide bonds using 3-mercatopropanamine linkers that subsequently were reacted with 2,6-diphenyl-4-(4-vinylbiphenyl)pyrylium using azobis(isobutyronitrile) as a radical initiator. After purification by dialysis, the resulting s-SWNT having covalently linked through an ethylthiopropylamide tether the strong electron-transfer pyrylium photosensitizer (Py-sSWNT) was characterized by solution 1H NMR spectroscopy (observation of specific signals due to the heterocyclic protons). Emission spectroscopy shows that the fluorescence of 2,6-diphenyl-4-(4-dodecylthiobiphenyl)pyrylium (Py-SC12) tetrafluoroborate (a model compound to the tethered pyrylium moiety in Py-sSWNT) (lambdaem 533 nm) is quenched by s-SWNT and vice versa that the emission of s-SWNT (lambdaem 330 nm) is quenched by Py-SC12. Depending on the excitation wavelength, Py-sSWNT exhibits dual emission corresponding to each of the two moieties, but with much less intensity than each of the model components independently. Laser flash photolysis of model Py-SC12 allows detection of the triplet (lambdaT-T 750 nm, tau 11.7 micros) and the much longer-lived pyrylium centered radical (lambdamax 525 nm, tau 147 mus). The latter species arises from photoinduced electron transfer from the sulfur atom, as the donor, to the pyrylium heterocycle in its electronic excited-state, as the electron acceptor. Laser flash photolysis (355 nm) of Py-sSWNT also allows detection of the pyrylium centered radical together with a broad absorption spanning from 200 to 500 nm and peaking at 280 nm. The latter band is absent in the laser flash photolysis of the model s-SWNT and was attributed to the electron hole localized on the nanotube moiety of Py-SWNT. The most remarkable effect of the steady-state irradiation is a 1 order of magnitude increase in the solubility of Py-sSWNT. According to TEM images this photoinduced solubility can be attributed to the debundling of the nanotubes due to photoinduced charge separation through the nanotube walls. In addition to exemplify how molecular compounds with photoresponsive properties can be derived from SWNT materials, the observation of photoinduced solubility can serve to develop SWNT layers suitable for photolithography patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号