首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
含烃类混合气体具有组分多、组分浓度范围大的特点。为了解决海量混合气体光谱数据样本实际上是无法实现的难题,在大量调查的基础上,研究探索了实际工程中可能出现的混合气体分布模式,最后确定为15种混合气体分布子模式,共计5 500个光谱数据样本用于训练与检验。在此基础上,按照混合气体分布子模式识别→混合气体分析→结果输出的思路,提出了2层15子集的含烃类混合气体分析方法。多层次多子集软件集成框架以15种混合气体分布子模式为基本框架,由于应用了基于样本关联规则及混合气体分布模式中心集的SVM快速在线分类方法,可向原基本框架在线实时的加入新的混合气体分布子模式。实验结果显示,混合气体组分浓度分析的最大绝对误差为0.41%,最大平均绝对误差为0.04%。可用于其他混合气体的红外光谱分析,具有实际应用价值。  相似文献   

2.
针对混合气体组分浓度分析中海量训练样本的获取、分析精度及实时在线分析等问题,将支持向量机这一新的信息处理方法和红外光谱分析法结合,提出了混合气体分布模式的概念。在此基础上,采用先进行混合气体分布模式识别,然后再进行混合气体分析的思路,在大量调查的基础上,研究探索了实际应用中可能出现的混合气体分布模式,确定60种混合气体分布模式,共计6 000个混合气体红外光谱数据样本用于模型的训练与检验。采用SMO算法实现了减量和增量的在线学习,最终建立了基于SVM的混合气体分布模式红外光谱在线识别模型。模型由模式识别和结果输出2层组成,模式识别层完成混合气体模式分布模式识别任务;结果输出层由60个SVM校正模型组成,完成具体的浓度分析任务。实验结果表明,该方法对混合气体分布模式的正确识别率不低于98.8%,可在小样本条件下对混合气体的分布模式进行在线识别,可在线实时加入新的混合气体分布模式,具有实际应用价值。  相似文献   

3.
介绍了一种基于支持向量机的混合气体红外光谱组分浓度和种类分析的新方法。利用核函数将组分气体特征吸收谱线重叠严重的混合气体光谱在高维空间变换后,建立SVM回归校正模型,进行混合气体浓度分析。在利用支持向量机回归校正模型进行混合气体组分浓度分析的同时,证明支持向量机回归校正模型也可用于混合气体组分种类分析。对不同组分和不同组分浓度的混合气体红外光谱数据进行了实验,研究了谱仪扫描间隔、分析特征波长范围、核函数和惩罚因子等因素对分析结果的影响。混合气体组分浓度实验结果的最大平均绝对误差Mean AE为0.132%;混合气体组分种类识别的准确率大于94%。解决了传统的光谱分析方法中光谱特征谱线重叠、光谱数据的维数大、定性和定量分析无法使用同一方法等问题,可用于其他混合气体的红外光谱分析,具有实际应用价值。  相似文献   

4.
基于SVM回归模型的混合气体组分种类光谱识别方法   总被引:1,自引:0,他引:1  
针对混合气体红外光谱分析中无法采用同一模型同时进行混合气体组分浓度的定量分析和组分种类的定性分析的问题,本文提出了基于SVM回归模型的混合气体组分种类光谱识别方法.通过详细推导,证明混合气体组分种类识别完全可以通过组分浓度分析的SVM回归模型来求解,混合气体组分种类识别是一种特殊的回归.实验结果显示,该方法的混合气体组分种类的正确识别率不小于92.5%.  相似文献   

5.
提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,提取出的主成分作为SVR的输入建立校正模型,实现了甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七种组组分特征吸收光谱严重重叠的混合气体的定量分析。用KPCA-SVR所建模型对未知浓度混合气体的七种组分预测的RMSE (φ×10-60较仅用SVR模型预测的RMSE (φ×10-6)降低了一个数量级。结果表明,核主成分分析法具有很强的非线性特征提取能力,可以充分利用全光谱数据并有效地消除光谱数据噪声,降低数据维数,与支持向量回归机结合可以提高红外光谱分析的精度,缩短模型计算时间,是一种有效的红外光谱分析新方法。  相似文献   

6.
基于支持向量机及小波变换的人参红外光谱分析   总被引:2,自引:1,他引:2  
以吉林名贵中药材人参作为研究的主要对象,详细研究了利用小波变换技术对红外光谱变量的压缩方法和实现过程,以及如何利用人工神经网络(ANN)和支持向量机(SVM)技术建立人参的红外光谱的产地鉴别模型,并详细讨论了ANN模型中相关参数的优化方法以及SVM模型中的核函数及σ值的优化选择。仿真实验表明,建立的ANN模型对40个吉林人参样品产地识别率达到92.5%,而采用径向基核函数的SVM模型的识别率为97.5%,其分类效果明显优于ANN模型。从而表明小样本的情况下,利用SVM结合小波变换技术可以对吉林人参的红外光谱的产地特征进行正确区分,同时为中草药的红外光谱的进一步的分析和研究提供了一定理论依据和技术支持。  相似文献   

7.
对于多组分混合气体定量分析而言,基于特征光谱的定量分析技术具有不可比拟的优势,而定量检测效率与精度取决于其采用的光谱数据处理算法的优劣。优化光谱分析算法参数与改进光谱数据处理方式是提高定量分析速度与精度的重要手段。针对井下多组分气体定量分析建模过程中支持向量机(SVM)参数难以确定,并且随组分数增多而呈指数增长的光谱数据运算量的问题,提出了一种改进型粒子群优化-支持向量机(PSO-SVM)算法。该算法主要针对多组分气体混合光谱数据量大,光谱特征信息存在交叠的问题进行研究。通过粒子变异约束PSO算法的收敛路径,再通过粒子信息共享提高模型优化效率,最后利用设置动态不敏感区提高模型精度。设计了一种井下多组分气体快速定量检测系统。该系统由CPU控制信号调制模块驱动红外光源,信号光经过滤尘除湿后的气室照射在探测器上。在压力与温度传感器补偿的基础上,由信号处理模块将探测得到的光信号量化传入CPU,最终,结合改进型PSO-SVM算法实现各组分气体浓度的定量分析。在完成井下实际样气采集、预处理的基础上,对浓度范围0~10.0%的CH4和浓度范围0~1.0%的C2H6,C3H8,SO2和CO2共5种组分的混合气体进行了测试,获得了800组红外光谱数据,其中训练集400组,验证集400组。采用SVM建立了多组分气体的定量分析模型,利用改进型PSO对SVM中的参数进行了优化,并将获得的最优参数重建了定量分析模型。对采集的红外光谱数据分别由本算法与传统BP网络算法进行各组分气体浓度反演,实验结果显示,由于变异粒子对其产生的约束,使最优值收敛范围变小,从而提高了收敛速度,该算法建模时间仅为传统方法的1/10;由于通过气体光谱特性给出不敏感区,使特征光谱计算时交叉敏感效率降低,从而提高了模型预测的准确度,平均误差约为传统方法的1/5。由此可见,该算法在全局优化及快速收敛方面得到了显著提升,改进型PSO结合SVM用于井下多组分气体定量分析是可行的。改进型PSO-SVM算法对于多组分气体混合红外光谱数据的分离具有很好的适用性,其有一定的实际应用价值。  相似文献   

8.
SVM回归法在近红外光谱定量分析中的应用研究   总被引:6,自引:9,他引:6  
研究了基于统计学习理论的支持向量机(SVM)回归法在近红外光谱定量分析中的应用。以66个小麦样品为实验材料,由33个小麦样品作为校正样品,采用4种不同核函数方法对小麦样品蛋白质含量与小麦样品近红外光谱进行SVM回归建模。以所建4种不同SVM回归模型对33个小麦预测样品的蛋白质含量进行了预测;不同回归模型的预测结果与凯氏定氮法确定的蛋白质含量的标准化学值间的相关系数均在0.97以上,平均绝对误差小于0.32。为了考察SVM回归校正模型的预测效果,同所建PLS回归模型的预测结果进行了比较,表明所建预测小麦样品蛋白质含量的SVM回归模型亦可通过近红外光谱进行实际样品的定量分析,且有较好的分析效果。  相似文献   

9.
油液光谱分析是研究综合传动运行状态的重要方法,文章以油液光谱分析数据为基础,运用支持向量机(support vector machine,SVM),建立了一种多输出最小二乘支持向量回归方法。利用多输出最小二乘支持向量回归方法对两台综合传动光谱油液分析数据进行了研究分析。研究表明,此方法得到的回归数据对1号综合传动试验数据具有良好的逼近效果,对2号综合传动油液光谱分析数据的预测具有较高的准确性。通过与2号综合传动试验数据的对比分析,发现了故障信息,并确定了故障部位。试验结果表明,该方法对于发现故障隐患,判断故障部位具有重要实际意义。  相似文献   

10.
基于吸收峰混叠的红外混合气体分析方法的研究   总被引:1,自引:2,他引:1  
林继鹏  刘君华 《光子学报》2006,35(3):408-412
针对5种主次吸收峰严重交叠的红外混合气体定量分析问题,提出一种基于高阶累积量分析方法,该方法将重叠的吸收谱线映射到彼此相互分开的四阶累积量空间;在四阶累积量空间中提出一种基于正则理论和最小二乘相结合的支持向量机多维数据建模方法.在小样本下有效地提高了模型的准确度和收敛速度实验结果表明,该方法使系统的引用误差小于4%,因而能满足外场使用的要求.  相似文献   

11.
多物种血液鉴别对于进出口检验检疫、刑事侦检以及野生动物保护等领域尤为重要。传统的血液鉴别方法,在鉴别时常常会对血液样本造成破坏,而Raman光谱作为一种振动光谱可获得物质分子振动、转动信息,进而分析物质组成,为无损血液鉴别技术提供了可能。目前,已经有基于Raman光谱进行血液鉴别的报道,但存在如下两个问题:单一物种样本数量较少,易导致模型欠拟合;均采用线性分类模型,忽略了光谱中非线性因素的影响,降低了模型的分类性能。因此,将支持向量机沿用至Raman光谱血液鉴别中,克服了线性模型只能为光谱中线性关系建模的缺点,有效地吸收了Raman光谱中的非线性关系,实现了对人、犬及兔血液的三分类。实验通过激发波长为785 nm的海洋Raman光谱仪测得共326例样本数据(人110例、犬116例、兔100例),利用Savitzky-Golay平滑滤波、加权最小二乘多项式拟合基线以及矢量归一化等方法对Raman光谱数据进行预处理,并选择2/3的样本数据作为校正集用于模型训练,余下1/3作为测试集用于盲测。与线性分类模型对比实验结果显示,该模型的校正集分类正确率达100%,盲测集分类正确率达93.52%,均优于线性分类模型。实验结果表明,基于支持向量机的分类模型可以用于Raman血液光谱鉴别,具有重要的研究价值和广泛的应用前景。  相似文献   

12.
针对混合气体建模过程中最小二乘支持向量机参数难以确定及红外光谱数据计算量过大的问题,提出一种粒子群优化的最小二乘支持向量机方法,用于建立基于主成分分析特征提取的红外光谱多组分气体定量分析模型。首先对主吸收峰区域的550个红外光谱数据利用主成分分析技术进行了特征提取,将降维得到的7个特征值作为模型的输入变量从而有效地降低了计算量。混合气体主要由浓度范围分别是0.1%~1%的甲烷、乙烷及0.1%~1.5%的丙烷三种组分气体组成。采用最小二乘支持向量机技术分别建立了各组分气体的定量分析模型,利用粒子群优化算法对最小二乘支持向量机算法中的参数进行了优化选取,取代了传统的遍历优化方法,然后利用取得的最优参数重建定量分析模型。实验结果表明,采用此方法离线建模所用时间比采用遍历优化方法节省40倍以上,预测结果误差水平相当,满足实测要求。粒子群优化算法在全局优化及收敛速度方面具有较大优势。粒子群优化算法与最小二乘支持向量机技术相结合用于混合气体定量分析是切实可行的,具有一定的实际意义和应用价值。  相似文献   

13.
近年来,深度学习在数据挖掘领域研究较多,深度学习中的集成学习算法也越来越多地应用到分类和定量回归中,但是,集成学习算法在红外光谱分析领域的应用研究较少.提出一种基于Blending模型融合的集成学习定量回归算法,利用GBDT算法、线性核支持向量机(LinearSVM)和径向基核支持向量机(RBF SVM)作为基学习器,...  相似文献   

14.
为了解决多组分红光谱定量分析中的特征的取和校正建模问题,本文提出了一种输入层自构造神经网络。在应用这种网络之前的预处理过程首先对训练数据进行分析,获得关于问题的某些先验知识。在训练阶段,神经网络根据先验知识自动选择输入层神经元的个数,同时确定网络参数。这种网络模型将特征提取和参数学习过程融为一体,有利于提高建模效率。利用仿真红外光谱的定量分析实验表明,这种网络模型不仅能够对光谱数据实现高效率的波长选择,并具有抑制随机噪声和非线性干扰的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号