首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
二阶变系数线性微分方程的几个可积类型   总被引:1,自引:0,他引:1  
利用变量代换把二阶变系数线性微分方程降阶为一阶线性微分方程,讨论了二阶变系数线性微分方程可积4个充分条件及通解公式.  相似文献   

2.
给出了变系数满足几种特定条件的二阶变系数齐次线性微分方程的特解形式,得到了一个命题.之后通过几个典型实例验证了命题在求解几类二阶变系数线性微分方程特解和通解中的有效性.  相似文献   

3.
王黎辉 《大学数学》2006,22(5):146-149
利用构造法构造二阶变系数线性齐次微分方程及其解,根据这种方法也能求得某些二阶变系数线性齐次微分方程的非零解,并给出了二阶变系数线性齐次微分方程存在非零解的充要条件.  相似文献   

4.
研究二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0,对振动因子p(t)变符号的情况讨论了方程的振动性,通过两个已有引理得到了方程振动的两个充分条件.所得结论推广了原有的二阶非线性微分方程与变时滞微分方程当系数不变号时的振动性结论,完善了具变符号振动因子的二阶非线性变时滞微分方程的研究.  相似文献   

5.
变系数二阶线性微分方程的一个新的可解类型   总被引:19,自引:3,他引:16  
张学元 《大学数学》2003,19(1):96-98
通过双变换——未知函数的线性变换和自变量变换 ,将一类变系数线性微分方程化为二阶常系数线性微分方程 ,从而得到变系数二阶线性微分方程的一个新的可解类型 ,推广了著名的二阶 Euler方程 .  相似文献   

6.
通过在二阶变系数非齐次线性微分方程两边同乘以某个积分因子将该方程转化为常系数非齐次线性微分方程,进而得出二阶变系数非齐次线性微分方程的通解公式.  相似文献   

7.
高杨  王贺元 《高等数学研究》2014,(1):77+82-77,82
介绍如何通过变换把二阶变系数线性微分方程转化为一阶非线性微分方程,进而利用待定系数法对其求解,并对二阶变系数线性微分方程与一阶常系数非线性微分方程的内在的关系进行讨论.  相似文献   

8.
《大学数学》2017,(6):122-126
二阶常系数线性微分方程的求解理论,目前已经比较完善.然而对于二阶变系数线性微分方程,其求解问题的研究仍处于发展状态中.本文在文献[3-5]的基础上,利用降阶法、线性变换法及Raccati方程的等价性得到若干个可写出通解的二阶变系数线性微分方程的新类型,尤其关于可转化为f″+gf=0二阶线性微分方程有了一些结果.  相似文献   

9.
权大学  赵临龙 《大学数学》2007,23(3):121-124
利用二阶线性微分方程的不变量,给出二阶线性微分方程常系数与变系数、齐次与非齐次的统一解法,而且扩大了自由项函数的形式.  相似文献   

10.
一类变系数微分方程的通解   总被引:2,自引:1,他引:1  
本文给出了一类变系数二阶线性微分方程的通解公式,进而得到了一批变系数微分方程的通解.  相似文献   

11.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

12.
In this work a semi-discretization method is presented for the inverse determination of spatially- and temperature-dependent thermal conductivity in a one-dimensional heat conduction domain without internal temperature measurements. The temperature distribution is approximated as a polynomial function of position using boundary data. The derivatives of temperature in the differential heat conduction equation are taken derivative of the approximated temperature function, and the derivative of thermal conductivity is obtained by finite difference technique. The heat conduction equation is then converted into a system of discretized linear equations. The unknown thermal conductivity is estimated by directly solving the linear equations. The numerical procedures do not require prior information of functional form of thermal conductivity. The close agreement between estimated results and exact solutions of the illustrated examples shows the applicability of the proposed method in estimating spatially- and temperature-dependent thermal conductivity in inverse heat conduction problem.  相似文献   

13.
In this article, approximate analytical (series) solutions for the temperature distribution in a longitudinal rectangular and convex parabolic fins with temperature dependent thermal conductivity and heat transfer coefficient are derived. The transient heat conduction problem is solved for the first time using the two-dimensional differential transform method (2D DTM). The effects of some physical parameters such as the thermo-geometric parameter, exponent and thermal conductivity gradient on temperature distribution are studied. Furthermore, we study the temperature profile at the fin tip.  相似文献   

14.
A nonlinear fin equation in which the thermal conductivity is an arbitrary function of the temperature and the heat transfer coefficient is an arbitrary function of a spatial variable is considered. Scaling, translational and spiral group symmetries of the equations are determined. Classification of the functions for which these symmetries exist is performed. In general, no useful symmetries exist for arbitrary thermal conductivity and heat transfer coefficients. However, for some restricted forms of the functions, useful symmetries exist. A similarity transformation is used to reduce the partial differential equation to an ordinary differential equation as an example.  相似文献   

15.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

16.
Most engineering problems, especially heat transfer equations, are mostly nonlinear. Homotopy analysis method (HAM) has been applied to solve many differential equations. In this paper, we use HAM to detect the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. The results of the homotopy analysis method are compared with those of the exact solution and Adomian’s decomposition method (ADM) solved by Cihat Arslanturk.  相似文献   

17.
It is important to investigate the effects of heat conduction of crack interior on thermoelastic fields of a cracked material. In this paper, an extended thermal-medium crack model is proposed to address the influences of the thermal conductivity inside an opening crack on the induced thermoelastic fields. Then the problem of a penny-shaped crack in a transversely isotropic material is investigated under applied mechanical and uniform heat flow loadings. Based on the Hankel transform technique, the governing partial differential equations are transformed to ordinary differential equations, then to a system of coupled dual integral equations. The thermoelastic fields around the penny-shaped crack are obtained explicitly by solving the derived dual integral equations. Numerical results are reported to show the influences of the thermal conductivity of crack interior on partial insulation coefficient, temperature change across crack and thermal stress intensity factor. As compared to the known thermal-medium crack model, the proposed one exhibits more applicability.  相似文献   

18.
In this paper we present numerical solutions to the unsteady convective boundary layer flow of a viscous fluid at a vertical stretching surface with variable transport properties and thermal radiation. Both assisting and opposing buoyant flow situations are considered. Using a similarity transformation, the governing time-dependent partial differential equations are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by a second order finite difference scheme known as the Keller-Box method. The numerical results thus obtained are analyzed for the effects of the pertinent parameters namely, the unsteady parameter, the free convection parameter, the suction/injection parameter, the Prandtl number, the thermal conductivity parameter and the thermal radiation parameter on the flow and heat transfer characteristics. It is worth mentioning that the momentum and thermal boundary layer thicknesses decrease with an increase in the unsteady parameter.  相似文献   

19.
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non‐linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame‐invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non‐linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non‐linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame‐invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non‐linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号