首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In many low resource settings multiple diseases are endemic. There is a need for appropriate multi-analyte diagnostics capable of differentiating between diseases that cause similar clinical symptoms. The work presented here was part of a larger effort to develop a microfluidic point-of-care system, the DxBox, for sample-to-result differential diagnosis of infections that present with high rapid-onset fever. Here we describe a platform that detects disease-specific antigens and IgM antibodies. The disposable microfluidic cards are based on a flow-through membrane immunoassay carried out on porous nitrocellulose, which provides rapid diffusion for short assay times and a high surface area for visual detection of colored assay spots. Fluid motion and on-card valves were driven by a pneumatic system and we present designs for using pneumatic control to carry out assay functions. Pneumatic actuation, while having the potential advantage of inexpensive and robust hardware, introduced bubbles that interfered with fluidic control and affected assay results. The cards performed all sample preparation steps including plasma filtration from whole blood, sample and reagent aliquoting for the two parallel assays, sample dilution, and IgG removal for the IgM assays. We demonstrated the system for detection of the malarial pfHRPII antigen (spiked) and IgM antibodies to Salmonella Typhi LPS (patient plasma samples). All reagents were stored on card in dry form; only the sample and buffer were required to run the tests. Here we detail the development of this platform and discuss its strengths and weaknesses.  相似文献   

2.
Two amperometric enzyme biosensor systems, based on glycerol dehydrogenase/diaphorase (GDH/DP) and glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP), were developed and used for estimation of glycerol content in a complex biological fluids. Enzymes were immobilized on interchangeable membranes by PCS-prepolymer technique. Buffers containing ferricyanide/NAD+ or ferrocyanide/ATP were used for measurements with GDH/DP and GK/GPOx/HRP biosensor, respectively. FIA assay of glycerol biosensor was characterized by a linear range of 0.01-1 or 0.01-1.5 mM glycerol, sensitivity of 6.02 or 1.42 mA/M cm2 and with signal loss of 40% after 90 h or 30% after 16 h during continuous operation at a sample throughput of 10 injections/h for GDH/DP or GK/GPOx/HRP biosensors, respectively. Both biosensors were successfully used for off-line monitoring of glycerol during microbial transformation of glycerol to 1,3-propanediol using an automatized flow-through system. The results were consistent with those obtained with HPLC. The stability of described biosensor systems was sufficient for monitoring and control of fermentation process within 24 h. The storage stability of enzyme membranes was several months.  相似文献   

3.
In this paper, a microfluidic chip for the manipulation and capture of cancer cells was introduced, in which the combination of dielectrophoresis (DEP) and a binding method based on chemical interactions by using cell-specific aptamers was performed to enhance the capture strength and specificity. The device has been simply constructed from a straight-channel PDMS placed on a glass substrate that has patterned electrode structures and a self-assembled monolayer of gold nanoparticles (AuNPs). The target cells were transported to the manipulation area by flow and attracted down to the region between the electrodes under the influence of positive DEP force. This approach facilitated subsequent selective capture by the modified aptamers on the AuNPs. The distribution of the electric field in the channel has also been simulated to clarify the DEP operation. As a result, the device has been shown to effectively capture target lung cancer cells with a concentration as low as 2 × 10 4 $2\ \ensuremath{\times{}}\ {10}^{4}\ $ cells/mL. The capture specificity in a sample of mixed cells is up to 80.4%. This technique has the potential to be applied to detection methods for many types of cancer.  相似文献   

4.
Due to their unique magnetic properties, excellent biocompatibility as well as multi-purpose biomedical potential (e.g., applications in cancer therapy and general drug delivery), superparamagnetic iron oxide nanoparticles (SPIONs) are attracting increasing attention in both pharmaceutical and industrial communities. The precise control of the physiochemical properties of these magnetic systems is crucial for hyperthermia applications, as the induced heat is highly dependent on these properties. In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.  相似文献   

5.
M Lee  K Lee  KH Kim  KW Oh  J Choo 《Lab on a chip》2012,12(19):3720-3727
Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow gold nanospheres (HGNs) as SERS agents because of their highly sensitive and reproducible characteristics. The utility of this platform was demonstrated by the quantitative immunoassay of alpha-fetoprotein (AFP) model protein marker. Our proposed SERS-based immunoassay platform has many advantages over other previously reported SERS immunoassay methods. The tedious manual dilution process of repetitive pipetting and inaccurate dilution is eliminated with this process because various concentrations of biomarker are automatically generated by microfluidic gradient generators with N cascade-mixing stages. The total assay time from serial dilution to SERS detection takes less than 60 min because all of the experimental conditions for the formation and detection of immunocomplexes can be automatically controlled inside the exquisitely designed microfluidic channel. Thus, this novel SERS-based microfluidic assay technique is expected to be a powerful clinical tool for fast and sensitive cancer marker detection.  相似文献   

6.
L Ge  S Wang  X Song  S Ge  J Yu 《Lab on a chip》2012,12(17):3150-3158
A novel 3D microfluidic paper-based immunodevice, integrated with blood plasma separation from whole blood samples, automation of rinse steps, and multiplexed CL detections, was developed for the first time based on the principle of origami (denoted as origami-based device). This 3D origami-based device, comprised of one test pad surrounded by four folding tabs, could be patterned and fabricated by wax-printing on paper in bulk. In this work, a sandwich-type chemiluminescence (CL) immunoassay was introduced into this 3D origami-based immunodevice, which could separate the operational procedures into several steps including (i) folding pads above/below and (ii) addition of reagent/buffer under a specific sequence. The CL behavior, blood plasma separation, washing protocol, and incubation time were investigated in this work. The developed 3D origami-based CL immunodevice, combined with a typical luminuol-H(2)O(2) CL system and catalyzed by Ag nanoparticles, showed excellent analytical performance for the simultaneous detection of four tumor markers. The whole blood samples were assayed and the results obtained were in agreement with the reference values from the parallel single-analyte test. This paper-based microfluidic origami CL detection system provides a new strategy for a low-cost, sensitive, simultaneous multiplex immunoassay and point-of-care diagnostics.  相似文献   

7.
Superparamagnetic nanoparticles are attracting significant attention. Therefore, being explored in microsystems for a wide range of applications. Typical examples include lab-on-a-chip and microfluidics for synthesis, detection, separation, and transportation of different bioanalytes, such as biomolecules, cells, and viruses to develop portable, sensitive, and cost-effective biosensing systems. Particularly, microfluidic systems incorporated with magnetic nanoparticles and, in combination with magnetoresistive sensors, shift diagnostic and analytical methods to a microscale level. In this context, nanotechnology enables the miniaturization and integration of a variety of analytical functions in a single chip for manipulation, detection, and recognition of bioanalytes reliably and flexibly. In consideration of the above, recent development and benefits are elaborated herein to discuss the role of magnetic nanoparticles inside the microchannels to design highly efficient disposable point-of-care applications from transportation to the detection of bioanalytes.  相似文献   

8.
Novel latching microfluidic valve structures are developed, characterized, and controlled independently using an on-chip pneumatic demultiplexer. These structures are based on pneumatic monolithic membrane valves and depend upon their normally-closed nature. Latching valves consisting of both three- and four-valve circuits are demonstrated. Vacuum or pressure pulses as short as 120 ms are adequate to hold these latching valves open or closed for several minutes. In addition, an on-chip demultiplexer is demonstrated that requires only n pneumatic inputs to control 2(n-1) independent latching valves. These structures can reduce the size, power consumption, and cost of microfluidic analysis devices by decreasing the number of off-chip controllers. Since these valve assemblies can form the standard logic gates familiar in electronic circuit design, they should be useful in developing complex pneumatic circuits.  相似文献   

9.
Liu J  Lin S  Qi D  Deng C  Yang P  Zhang X 《Journal of chromatography. A》2007,1176(1-2):169-177
An easily replaceable microchip enzymatic microreactor has been fabricated based on the glass microchip with trypsin-immobilized superparamagnetic nanoparticles. Magnetic nanoparticles with small size (50 nm in diameter) and strong magnetism were synthesized. At first, amine-functionalized magnetic nanoparticles with high magnetic responsivity and excellent dispersibility were prepared through a facile one-pot strategy. Then, magnetic nanoparticles were functionalized with numerous aldehyde (-CHO) groups by treating the as-synthesized, amine-functionalized magnetic nanoparticles with glutaraldehyde. Finally, immobilization of trypsin onto the aldehyde-functionalized magnetic nanoparticles was achieved through reaction of the aldehyde groups with amine groups of trypsin. The prepared magnetic nanoparticles were then locally packed onto the glass microchip by the application of a strong magnetic field using a magnet to form an on-chip magnetic nanoparticles packing bed. Capability of the proteolytic microreactor was demonstrated by cytochrome c, bovine serum albumin and myoglobin as model proteins. The digestion products were characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with sequence coverage of 83%, 43% and 79% observed, respectively. Complete protein digestion was achieved in a short time (10 s) under the flow rate of 5 microL/min. These results are expected to open up a new possibility for the proteolysis analysis as well as a new application of magnetic nanoparticles. It is easy to replace the nanoparticles and make the new microreactor. It takes less than 1 min under the condition of extra magnetic to form a new packing bed. The packing bed can be used for at least five times without any treatments. Additionally, since the preparation and surface functionality of magnetic nanoparticles is low-cost and reproducible, the preparation method and application approach of the magnetic nanoparticles may find much potential in proteome research. This microreactor was also successfully applied to the analysis of an RPLC fraction of the rat liver extract. After a database search, six proteins were identified. This opens a route for its further application in bottom-up proteomic analysis.  相似文献   

10.
The authors describe a sensitive and rapid upconversion fluorescence based immunoassay for the neonicotinoid insecticide imidaclothiz (IMI). Upconversion nanoparticles (UCNPs) consisting of hexagonal phase NaYF4:Yb,Er were functionalized with amino groups and coupled to antibody against IMI. Gold nanoparticles (AuNPs) were used to label the antigen (analyte). Competitive binding of IMI and AuNPs-labeled IMI to the UCNPs-labeled antibody results in a change in the fluorescence of the UCNPs at excitation/emission wavelengths of 980/544 nm. Under optimal conditions, the concentration of IMI producing a 50% saturation of the signal (SC50) is 18.9 ng mL?1, and the limit of detection is 2.1 ng mL?1. The method was applied to the determination of IMI in (spiked) paddy water, soil, pear, rice, apple, tomato, pakchoi and cabbage. Average recoveries range from 67.4% to 104.6%, and relative standard deviations from 1.9% to 10.3%. The results correlate well with those obtained by HPLC, the relative correlation coefficient (R2) being 0.9811.
Graphical abstract Based on inner filter effect (IFE), a novel immunoassay for imidaclothiz (IMI) was developed by using upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) as labels. Competitive binding of IMI and AuNPs-labeled IMI to the UCNPs-labeled antibody results in a change in the fluorescence of the UCNPs at excitation/emission wavelengths of 980/544 nm.
  相似文献   

11.
Albadi  Y.  Sirotkin  A. A.  Semenov  V. G.  Abiev  R. S.  Popkov  V. I. 《Russian Chemical Bulletin》2020,69(7):1290-1295
Russian Chemical Bulletin - Gadolinium orthoferrite GdFeO3 nanoparticles were synthesized by co-precipitation of gadolinium and iron(m) hydroxides in a free impinging-jets microreactor followed by...  相似文献   

12.
A microfluidic device integrated with molecularly imprinted magnetic nanoparticles as stationary phase was designed for rapid enantioseparation by capillary electrochromatography. The nanoparticles were synthesized by the co-polymerization of methacrylic acid and ethylene glycol dimethacrylate on 3-(methacryloyloxy)propyltrimethoxysilane-functionalized magnetic nanoparticles (25-nm diameter) in the presence of template molecule, and characterized with infrared spectroscopy, thermal gravimetric analysis, and transmission electron microscope. The imprinted nanoparticles (200-nm diameter) could be localized as stationary phase in the microchannel of microfluidic device with the tunable packing length by the help of an external magnetic field. Using S-ofloxacin as the template molecule, the preparation of imprinted nanoparticles, the composition and pH of mobile phase, and the separation voltage were optimized to obtain baseline separation of ofloxacin enantiomers within 195 s. The analytical performance could be conveniently improved by varying the packing length of nanoparticles zone, showing an advantage over the conventional packed capillary electrochromatography. The linear ranges for amperometric detection of the enantiomers using carbon fiber microdisk electrode at +1.0 V (vs. Ag/AgCl) were from 1.0 to 500 μM and 5.0 to 500 μM with the detection limits of 0.4 and 2.0 μM, respectively. The magnetically tunable microfluidic device could be expanded to localize more than one kind of template-imprinted magnetic nanoparticles for realizing simultaneous analysis of different kinds of chiral compounds.  相似文献   

13.
Human immunodeficiency virus (HIV) diagnostics are urgently needed in resource-scarce settings. Monitoring of HIV-infected patients requires accurate counting of CD4+ T lymphocytes. However, the current methods for enumeration of CD4+ T lymphocytes are of high cost, technically complex and time-consuming. In this paper, we developed a simple, rapid and inexpensive one-step immunomagnetic method for separating and counting CD4+ T lymphocytes on microfluidic devices with enlarged reaction chambers. CD4+ T lymphocytes were successfully separated and captured from the cell suspension obtained from mouse thymus. CD4 counts were determined under an optical microscope in a rapid and simple format. In order to acquire the maximum efficiency of cell capture, relative parameters were investigated, including section area of the reaction chamber and injection flow rate of the cell suspension. The enlarged reaction chamber with two symmetrical cone-shaped ends was helpful for cell capture, and the maximum capability of captured CD4+ T lymphocytes was about 700 cells μL−1. Our investigations avoided the complex sample pre-treatment, and the entire analysis time was significantly reduced to 15 min. This CD4 counting microdevice had the potential to reduce the cost for HIV diagnosis in resource-limited settings.  相似文献   

14.
This Communication reports real-time sizing of nanoparticles in microfluidic systems using confocal correlation spectroscopy (CCS). CCS can be used to measure the size of both fluorescent and nonfluorescent particles at low concentrations (相似文献   

15.
Tang  Juan  Tang  Dianping 《Mikrochimica acta》2015,182(13):2077-2089

Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications.

  相似文献   

16.
17.
An ultrasensitive multiplexed immunoassay method was developed at a disposable immunosensor array using mesoporous platinum nanoparticles (M-Pt NPs) as nonenzymatic labels. M-Pt NPs were prepared by ultrasonic method and employed to label the secondary antibody (Ab2) for signal amplification. The immunosensor array was constructed by covalently immobilizing capture antibody (Ab1) on graphene modified screen printed carbon electrodes (SPECs). After the sandwich-type immunoreactions, the M-Pt-Ab2 was bound to immunosensor surface to catalyze the electro-reduction of H2O2 reaction, which produced detectable signals for readout of analytes. Using breast cancer related panel of tumor markers (CA125, CA153 and CEA) as model analytes, this method showed wide linear ranges of over 4 orders of magnitude with the detection limits of 0.002 U mL−1, 0.001 U mL−1 and 7.0 pg mL−1 for CA125, CA153 and CEA, respectively. The disposable immunosensor array possessed excellent clinical value in cancer screening as well as convenient point of care diagnostics.  相似文献   

18.
Applicability of polydimethylsiloxane (PDMS) for easy and rapid fabrication of enzyme sensor chips, based on electrochemical detection, is examined. The sensor chip consists of PDMS substrate with a microfluidic channel fabricated in it, and a glass substrate with enzyme-modified microelectrodes. The two substrates are clamped together between plastic plates. The sensor chip has shown no leakage around the microelectrodes under continuous solution flow (34 μl/min). Amperometric response of the sensor chips developed in this work suggest that various types of enzyme sensors can be designed by using PDMS microfluidic channels.  相似文献   

19.
An electroosmotic flow (EOF)-switchable poly(dimethylsiloxane) (PDMS) microfluidic channel modified with cysteine has been developed. The native PDMS channel was coated with poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles by layer-by-layer technique was assembled on PDDA to immobilize cysteine. The assembly was followed by infrared spectroscopy/attenuated total reflection method, contact angle, EOF measurements and electrophoretic separation methods. EOF of this channel can be reversibly switched by varying the pH of running buffer. At low pH, the surface of channels is positively charged, EOF is from cathode to anode. At high pH, the surface is negatively charged, EOF is from anode to cathode. At pH 5.0, near the isoelectric point of the chemisorbed cysteine, the surfaces of channels show neutral. When pH is above 6.0 or below 4.0, the magnitude of EOF varies in a narrow range. And the modified channel surface displayed high reproducibility and good stability, a good reversibility of cathodic-anodic EOF transition under the different pH conditions was observed. Separation of dopamine and epinephrine as well as arginine and histidine were performed on the modified chip.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号