首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The effects of sintering temperature and Bi2O3 content on the microstructure and magnetic properties of lithium–zinc (LiZn) ferrites prepared by a conventional ceramic method were investigated. The results show that the densification behavior and grain growth rate were greatly improved by the addition of Bi2O3, because a liquid phase sintering occurred during the sintering process at high temperature due to the low-melting point of Bi2O3 (825 °C). X-ray diffraction (XRD) patterns of the slightly doped samples did not reveal the appearance of any phase other than spinel LiZn ferrite. However, the secondary phase of perovskite BiFeO3 was detected for Bi2O3 content of more than 0.25 wt%. The studies further show that Bi oxide was present at grain boundary, and promoted the grain growth as reaction center at lower temperature. A high saturation magnetization, squareness ratio, minimum ferromagnetic resonance linewidth and low coercive force were obtained for the sample with 1.00 wt% Bi2O additive at lower sintering temperature (1100 °C).  相似文献   

2.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

3.
The effect of Al2O3 on the electrical properties of ZnO-Pr6O11-based ceramics is investigated in this work. The average grain size of ZnO increased as the Al2O3 content increased from 10.3 to 13.5 μm. It was found that a sample doped with Al2O3 of 0.005 mol% showed the highest nonlinear current-voltage characteristics with a nonlinear exponent of 43.8 and a leakage current of 0.66 μA. When the Al2O3 content was increased, the donor concentration was increased from 0.51×1018/cm3 to 1.59×1018/cm3, but the barrier height was decreased from 1.01 to 0.87 eV. The best electrical stability against aging stress was obtained by doping Al2O3 of 0.001 mol%.  相似文献   

4.
The Ni-Cu-Zn ferrites with different contents of Bi4Ti3O12 ceramics (1-8 wt%) as sintering additives were prepared by the usual ceramic technology and sintered at 900 °C to adapt to the low temperature co-fired ceramic (LTCC) technology. The magnetic and dielectric properties of the ferrite can be effectively improved with the effect of an appropriate amount of Bi4Ti3O12. For all samples, the ferrite sintered with 2 wt% Bi4Ti3O12 has relatively high density (98.8%) and permeability, while the ferrite with 8 wt% Bi4Ti3O12 has relatively good dielectric properties in a wide frequency range. The influences of Bi4Ti3O12 addition on microstructure, magnetic and dielectric properties of the ferrite have been discussed.  相似文献   

5.
This study is focused on the investigation of the transport properties of Bi86.5Sb13.5 polycrystalline alloys. Bulk materials were prepared by cold pressing ultrafine powders of alloy and by annealing the resulting pellets. Special care was taken to avoid contamination of the powders. Starting with powders of average grain size of 0.06 μm bulk semi-conducting sample with mean grain size respectively of 0.1, 0.8, 2.5 and 200 μm were obtained. The influence of the grain size on both electrical resistivity, thermal conductivity, thermoelectric power, thermoelectric figure of merit is presented within the range 80-330 K. The thermoelectric properties are discussed and compared with those of single crystals presented in previous studies.  相似文献   

6.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

7.
Lithium ferrite materials with different concentrations of Bi2O3 and V2O5 additives are prepared by the conventional ceramic technique. The x-ray diffraction analysis proves that the additives do not affect the final crystal phase of the lithium ferrite in our testing range. Both Bi2O3 and V2O5 additives could promote densification and lower sintering temperature of the lithium ferrite. The average grain size first increases, and then gradually decreases with the Bi2O3 content. The maximal grain size appears with 0.25 wt% Bi2O3. The average grain size first increases, and then is kept almost unchanged with the V2O5 content. The maximal average grain size of the samples with V2O5 additive is much smaller than that of the samples with Bi2O3 additive. Furthermore, the V2O5 additive more easily enters the crystal lattice of the lithium ferrite than the Bi2O3 additive. These characteristics evidently affect the magnetic properties, such as saturation flux density, ratio of remanence Br to saturation flux density Bs, and coercive force of the lithium ferrite. The mechanisms involved are discussed.  相似文献   

8.
The microstructure and magnetic properties of SnO2-doped NiZn ferrites prepared by a solid-state reaction method have been investigated. Due to its low melting point (∼1127 °C), moderate SnO2 enhanced mass transfer and sintering by forming liquid phase, which accelerated the grain growth. However, excessive SnO2 producing much of liquid phase retarded mass transfer and sintering, leading to a decrease in grain size. The diffraction intensity of the samples doped with SnO2 addition was stronger than that of the sample without addition. The lattice constant initially decreased up to a content of 0.10 wt% and showed an increase at higher content up to 0.50 wt%. The initial permeability (μi) initially increased up to a content of 0.15 wt% and showed a decrease at higher content up to 0.50 wt%; however, losses (PL) measured at 50 kHz and 150 mT changed contrarily. Both saturation induction (BS) and Curie temperature (TC) decreased gradually with increasing SnO2. Finally, the sample doped with 0.10–0.15 wt% SnO2 showed the higher permeability and lower losses.  相似文献   

9.
Bismuth Oxide (Bi2O3) rods are successfully prepared on δ-Bi2O3 films under atmospheric pressure by means of halide chemical vapour deposition using BiI3 and O2 as a starting material. The deposition of Bi2O3 rods strongly depends on the deposition temperature, the input partial pressure of BiI3 and O2 and the method for supplying O2 gas. Bi2O3 rods can be obtained at [O2]/[BiI3] ratios of 500 and N2:O2=50:250. The length of the Bi2O3 rods increases proportionally from 2 to 30 μm, while their diameters of between 0.2 and 0.5 μm do not depend on the deposition time.  相似文献   

10.
Two-dimensional crystal curved lines consisting of the nonlinear optical SmxBi1−xBO3 phase are fabricated at the surface of 8Sm2O3·37Bi2O3·55B2O3 glass by continuous wave Nd:YAG laser (wavelength: 1064 nm) irradiation (samarium atom heat processing) with a power of ∼0.9 W and a laser scanning speed of 5 μm/s. The curved lines with bending angles of 0-90° or with sine-shapes are written by just changing the laser scanning direction. The polarized micro-Raman scattering spectra for the line after bending are the same as those for the line before bending, indicating that the crystal plane of SmxBi1−xBO3 crystals to the crystal growth direction might be maintained even after the change in the laser scanning direction. It is found from laser scanning microscope observations that the crystal lines at the surface are swelled out smoothly, giving a height of about 10 μm.  相似文献   

11.
Thermally evaporated Bi2Te3 thin films were deposited on glass substrates. X-ray diffraction study confirmed that the growned films are polycrystalline in nature having hexagonal structure. The film exhibits preferential orientation along the [0 1 5] direction for the films of all thickness together with other abundant planes [0 1 1 1] and [1 1 0]. Various structural parameters such as lattice constants, crystallite size, strain, and dislocation density have been calculated and they are found to be thickness dependent. The lattice parameters are found to be a=4.38 Å and c=30.40 Å. The grain size of the films increases with thickness as the dislocation density and the microstrain decreases with thickness. The mean bond energy and the average coordination number of Bi2Te3 thin film are found to be 1.72 eV and 2.4, respectively.  相似文献   

12.
Stearic acid coated Bi2O3 nanoparticles in the size range of 5-13 nm were synthesized by the microemulsion method. HRTEM showed that the morphology of Bi2O3 nanoparticles was ellipsoidal. The absorption edge of Bi2O3 nanoparticles showed a blue shift of ∼0.45 eV, comparing with that of the bulk Bi2O3. At room temperature, Bi2O3 nanoparticles also showed a strong luminescence at 397 and 420 nm, depending on the excitation wavelength.  相似文献   

13.
The mixed spinel-perovskite composites of xMnFe2O4-(1-x)BiFeO3 with x=0, 0.1, 0.2, 0.3 and 0.4 were prepared by solid state reaction method. The structure and grain size were examined by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD results showed that the composites consisted of spinel MnFe2O4 and perovskite BiFeO3 phases after being calcined at the temperature 950 °C for 2 h. The grain size ranged from 0.8 to 1 μm. Magnetization was found to increase with increasing concentration of ferrite content. The variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Magnetocapacitance was also observed in the prepared composites, which may be the sign of magnetoelectric coupling in the synthesized composites at room temperature.  相似文献   

14.
Multi-component bismuth borate glasses doped with vanadium ions 15Li2O-15K2O-xBi2O3-(65−x) B2O3: 5V2O5, (x=3, 5, 7, 10, 12 and 15) have been prepared using conventional melt quench technique. Characterization of the prepared glasses has been done using X-ray diffraction, differential scanning calorimetry and density measurements. The effect of Bi2O3 content on the optical properties of the present glass system is studied from the optical absorption spectra recorded in the wavelength range 200-800 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The values of optical band gap for indirect allowed transitions have been determined using available theories. The origin of the Urbach energy is associated with the phonon-assisted indirect transitions. The density and molar volume studies indicate that Bi2O3 in these glasses is acting partly as network modifier and partly as network former. The variations in the optical band gap energies, density and molar volume with Bi2O3 content have been discussed in terms of changes in the glass structure. Values of the theoretical optical basicity, average crosslink density and the average electronic polarizability are also reported.  相似文献   

15.
A composite material (hereafter referred to as NYC) containing Ni, Y2O3-stabilized ZrO2 (YSZ) and Ce0.9Ca0.1O2−δ (CC10) particles was prepared and used as the anode of solid oxide fuel cells (SOFCs). The performance of NYC was better than that of conventional Ni/YSZ anodes in terms of anodic overpotential and interface impedance. The additional CC10 particles improved the anode properties. XRD results suggest that a solid solution of YSZ and CC10 was produced. From impedance measurements, it is concluded that the solid solution exhibits substantial electronic conduction. Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ anodes exhibited the best properties over the experimental temperature range. A SOFC with an anode of Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ provided the maximum power density and current density. Addition of CC10 with an average particle size of 0.3 μm was more advantageous than that with an average size of 3 μm.  相似文献   

16.
Structural and magnetic properties of Cu substituted Ni0.50−xCuxZn0.50Fe2O4 ferrites (where x=0.0-0.25) prepared by an auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. The lattice parameter increases with the increase in Cu2+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 22 to 72 nm. The theoretical density increases with increase in copper content whereas the Néel temperature decreases. The bulk density, grain size and permeability increases up to a certain level of Cu2+ substitution, beyond that all these properties decrease with increase in Cu2+ content. The bulk density increases with increase in sintering temperatures up to 1250 °C for the parent composition, while for substituted compositions it increases up to 1200 °C. Due to substitution of Cu2+, the real part of the initial permeability increases from 97 to ∼390 for the sample sintered at 1100 °C and from 450 to 920 for the sample sintered at 1300 °C. The ferrites with higher initial permeability have a relatively lower resonance frequency, which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity. The saturation magnetization, Ms, and the number of Bohr magneton, n(μB), decreases up to x=0.15 due to the reduction of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n(μB) values are enhanced. The substitution of Cu2+ influences the magnetic parameters due to modification of the cation distribution.  相似文献   

17.
Six types of BiFeO3 ceramic samples, with subtle differences in synthesis conditions, were prepared. The comparison of their phases, electrical resistivity, and porosity revealed that the use of Bi2O3 and Fe2O3 powders of <1 μm size and a rapid liquid-phase sintering process of 855 °C for 5 min at 100 °C/s is beneficial to synthesize poreless single-phase BiFeO3 samples with high electrical resistivity of ∼5×1012 Ω cm. Deoxygenated BixFeyO1.5x+1.5yδ (xy, δ≥0) impurities were identified and found to be the main cause of low electrical resistivity and high porosity in the multi-phase samples. Large saturation polarization of 16.6 μC/cm2 and low leakage current density of 30 mA/m2, both at a high electric field of 145 kV/cm, were measured in the optimized single-phase samples at room temperature besides a large piezoelectric d33 coefficient of 27 pC/N and an obvious canted antiferromagnetic behavior.  相似文献   

18.
We have demonstrated the synthesis of one-dimensional (1D) structures of bismuth oxide (Bi2O3) by a reaction of a trimethylbismuth (TMBi) and oxygen (O2) mixture at 450 °C. Scanning electron microscopy showed that the product consisted of 1D materials with width or diameters less than 1 μm and lengths up to several tens of micrometers. The X-ray energy dispersive spectroscopy revealed that the materials contained elements of Bi and O. The results of X-ray diffraction and selected area electron diffraction pattern indicated that the obtained Bi2O3 were crystalline with monoclinic structure.  相似文献   

19.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

20.
The effects of 0.01 and 0.1 mol B2O3 addition to the microstructure and magnetic properties of a Ni–Zn ferrite composition expressed by a molecular formula of Ni0.4Zn0.6Fe2O4 were investigated. The toroid-shaped samples prepared by pressing the milled raw materials used in the preparation of the composition were sintered in the range of 1000–1300 °C. The addition of 0.01 mol B2O3 increased the grain growth and densification giving rise to reduced intergranular and intragranular porosity due to liquid-phase sintering. The sintered toroid sample at 1300 °C gave the optimum magnetic properties of Br=170 mT, Hc=0.025 kA/m and a high initial permeability value of μi=4000. The increment of the B2O3 content to 0.1 mol resulted in a pronounced grain growth and also gave rise to large porosity due to the evaporation of B2O3 at higher sintering temperatures. Hence, it resulted in an air-gap effect in the hysteresis curves of these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号